
All Things Flow
Unfolding the History of Streams

Thursday, October 28, 2021

6th International Conference on the History and Philosophy of Computing

Aggelos Biboudis Jeremy Gibbons Oleg Kiselyov

1

Philosophy of motion
• "whether motion exists as we perceive it, what is it,

and, if it exists, how does it occur."
• pre-Socratics: Heraclitus (535 BC), Democritus
• Parmenides: motion is only perceived but cannot actually

exist (relativity for motion)
• Zeno of Elea: infinite continuous matter, space (and time)
• Democritus: matter and or space (and time) are discrete

and finite
• Plato, Aristotle, the Sanlun school of Mahayana Buddhism

and Sengzhao (The Immutability of Things-3rd century
CE), Aztecs, ...

2

The goal of this talk

• We lay the ground for a holistic discussion behind
streams of information

• Motivate cross-disciplinary curiosity
• Target audience for an upcoming paper:

• an emerging computer science researcher,
• a curious software engineer; and
• a database query optimisation specialist

3

von Neumann bottleneck

• a CPU
• a store
• a connecting tube that can transmit word-at-a-time

rate between CPU and the store

4

1977 ACM Turing Award Lecture

5

John Backus. 1978. Can programming be liberated from the von
Neumann style? a functional style and its algebra of programs.
Commun. ACM 21, 8 (Aug. 1978)

Is it still applicable? (2021)

• Not word-at-a-time (out-of-order, a stream of instructions,
superscalar, native SIMD, etc)

• The data bus bandwidth problem is solved by L1D and L1I, L2/L3
caches

• 64 bits nowadays
• Backus was visionary: how many times our mind goes to the array

representation first and we think in terms of processing X-at-a-time
aka the von Neumann machine-style - a style of no equational
reasoning and complex semantics trying to capture effects?

6

Stream—a term historically
used to denote:

1. a means of processing lots of data in limited memory;
2. capturing the semantics of I/O;
3. event processing and correlation; and
4. iteration abstractions.

7

Conway’s design for a one-pass
COBOL compiler (1963)

8 Melvin E. Conway. 1963. Design of a separable transition-diagram
compiler. Commun. ACM 6, 7 (July 1963),

1. Streams for data processing in sub-
linear space

(Doug. McIlroy, 1964, implemented in 1973 by Ken Thomson more info at
http://www.softpanorama.org/Scripting/Piporama/history.shtml)

9

http://www.softpanorama.org/Scripting/Piporama/history.shtml

2. Capturing the semantics of for-loops and I/O

10 P. J. Landin. 1965. Correspondence between ALGOL 60 and
Church's Lambda-notation: part I. Commun. ACM 8, 2 (Feb. 1965)

3. Streams as event
processing and correlation

• Information flow processing: data stream
processing (DSMS) vs complex event processing
systems

• Events (e.g., sensor readings), triggers

11

Lucid (1976)
• Expressions only; no control statements
• Instead of “fetching” data, processing on the flow of data
• Network of transformations in applicative fashion
• Values of expressions: sequences (streams) only
• Inspired by Peter Landin’s ISWIM (1966)

12

fac
 where
 n = 0 fby (n + 1);
 fac = 1 fby (fac * (n + 1));
 end

Spark Streaming, Flink, Kafka
Streams, Samza, …

• Not far from the ideas of Lucid and Unix Pipes et al.
•Distributed & publish subscribe

•Fault Tolerance (checkpoints)

•Delivery Guarantees (such as at-most-once, exactly-once, at-least-once)

•State management (such as counts on records)

•Performance

13

4. Streams as iteration
abstractions

• If we can’t get away from the von-Neumann philosophy lets
attempt to tame the control flow

• PL constructs for streaming computations
(full co-routines, yield (semi-co-routines), iterators)

• If there is a next element, transform and propagate with the
minimal memory footprint

• Streaming libraries emerge

14

From Generators to Iterators

15

IPL
(Allen Newell,

Cliff Shaw,
Herbert A.

Simon)

LISP

CLU (Barbara Liskov)

1956 1959 1977

Procrastina
ting [SECD]

Machine

19751910-1913

Motivating example 1: Streaming APIs
(or “who controls my stack”?)

16

Push<T> source(T[] arr) {
 return k -> {
 for (int i = 0;
 i < arr.length;
 i++)
 k(arr[i]); };
}

Push<Integer> sFn =
 source(v).map(i->i*i);

sFn(el -> /* consume el */);

Pull<T> source(T[] arr) {
 return new Pull<T>() {
 boolean hasNext() {..}
 T next() {..}
 };
}

Pull<Integer> sIt =
 source(v).map(i->i*i);

while (sIt.hasNext()) {
 el = sIt.next();
 /* consume el */
}

Motivating Example 2: Database Systems

• Volcano model (Graefe, 1994), pull
• DataPath (Arumugam, 2010), push
• HyPer model (Neumann, 2011), code generation

17

Take-aways
• Conway, Backus, Landin, McIlroy were visionaries

• Now more than ever we are coming to appreciate
their perspective

• Emerging streaming applications such as 6G/Edge
networks and streaming tensor computations
will rely on the same principles; we lay the ground
for a holistic discussion behind streams

18

Thank you!

19

