written and coded speech acts
WRITTEN AND CODED ‘SPEECH ACTS’

Mireille Hildebrandt
Preliminaries
written and coded speech acts
1. Things that matter are not computable
1. Things that matter are not computable
2. They can nevertheless be **made** computable
1. Things that matter are not computable
2. They can nevertheless be made computable
3. They can be computed in different ways and the difference matters
What’s new?

1. Preliminaries
2. On the shared Welt
3. On the shared Welt as in-formed by computing systems
4. The difference that makes a difference
5. Coded speech acts under the rule of law
What’s new?

1. Preliminaries
2. On the shared Welt
3. On the shared Welt as in-formed by computing systems
4. The difference that makes a difference
5. Coded speech acts under the rule of law
Late Husserl’s and Habermas’ *Lebenswelt*
- *Shared world*
- *Merleau Ponty and Ricoeur ‘problem of the other mind’*
- Late Husserl’s and Habermas’ Lebenswelt
 - Shared world
 - Merleau Ponty and Ricoeur ‘problem of the other mind’

- Wittgenstein’s Lebensformen, Sprachspiele, Regeln folgen and Familienähnlichkeit
 - Forms of life, language games, to follow a rule and family resemblance
Late Husserl’s and Habermas’ Lebenswelt
 – Shared world
 – Merleau Ponty and Ricoeur ‘problem of the other mind’

Wittgenstein’s Lebensformen, Sprachspiele, Regeln folgen and Familienähnlichkeit
 – Forms of life, language games, to follow a rule and family resemblance

Austin, Searle and MacCormick’s speech act theory
 – Further developed with regard to written speech legal acts
 – ‘Text-driven Jurisdiction in Cyberspace’ https://osf.io/jgs9n/
The shared Welt is largely sub-conscious even if learnt (tacit knowledge)

- It is the world we find ourselves in when developing our embodied mind
- It is the ground we stand on, even though it is forever shifting and rebuilt
The shared Welt is largely sub-conscious even if learnt (tacit knowledge)
- It is the world we find ourselves in when developing our embodied mind
- It is the ground we stand on, even though it is forever shifting and rebuilt

Computing systems are not grounded in a shared Welt
- This is the difference that makes a difference between human and computational cognition
- They do not navigate our shared world but ‘parasite’ on it:
Welt: the difference that makes a difference

- The shared Welt is largely sub-conscious even if learnt (tacit knowledge)
 - It is the world we find ourselves in when developing our embodied mind
 - It is the ground we stand on, even though it is forever shifting and rebuilt

- Computing systems are not grounded in a shared Welt
 - This is the difference that makes a difference between human and computational cognition
 - They do not navigate our shared world but ‘parasite’ on it:
 - Simulation, representation, traces, computational inferences
 - Note that any ‘feedback’ or ‘experience’ is either data or code, not RL
 - An algorithm cannot be trained on future data
Welt: the difference that makes a difference

- Computing systems are, however, part of our shared Welt
Welt: the difference that makes a difference

- Computing systems are, however, part of our shared Welt

- The adaptive, relational and ecological nature of human cognition implies that computing systems transform both our shared Welt and our selves
1. Preliminaries
2. On the shared Welt
3. On the shared Welt as in-formed by computing systems
4. The difference that makes a difference
5. Coded speech acts under the rule of law
Computing implies quantification and formalisation
 – Mathematics assumes and depends on both
Computing implies **quantification** and **formalisation**
- **Mathematics** assumes and depends on both

- **Quantification IRL entails qualification**
- To count as the same entity, variable...
Computing implies quantification and formalisation
 - Mathematics assumes and depends on both

Quantification IRL entails qualification
 - To count as the same entity, variable ...

Qualification is a speech act with performative effect
 - Quantification depends on and performs qualification
Computing

- Computing implies quantification and formalisation
 - Mathematics assumes and depends on both
- Quantification IRL entails qualification
 - To count as the same entity, variable ...
- Qualification is a speech act with performative effect
 - Quantification depends on and performs qualification
- Formalisation is a speech act with performative effect
 - Translations decide on interpretation
Computing

- Computing implies quantification and formalisation
 - Mathematics assumes and depends on both

- Quantification IRL entails qualification
 - To count as the same entity, variable ...

- Qualification is a speech act with performative effect
 - Quantification depends on and performs qualification

- Formalisation is a speech act with performative effect
 - Translations decide on interpretation

- Computing requires deciding on proxies, e.g. groundtruthing in ML
 - The central notion in design, default settings and deployment is relevance
 - Relevance depends on purpose, actor(s) and environment
 - LoP: generic, operational, concrete (e.g. justice, fairness, equivalent error rate)
Computing

- Note that human judgement requires ranking and weighing
Note that human judgement requires ranking and weighing

- which is an act of *qualification*: what is more important, more serious
- and close to quantification: ‘more’ implies a measure
Note that human judgement requires ranking and weighing

- which is an act of qualification: what is more important, more serious
- and close to quantification: ‘more’ implies a measure

- family resemblance implies that qualification is an act of attribution
- that is rooted in the tacit dimensions of the shared world (life forms)
Note that human judgement requires ranking and weighing

- which is an act of qualification: what is more important, more serious
- and close to quantification: ‘more’ implies a measure

- family resemblance implies that qualification is an act of attribution
- that is rooted in the tacit dimensions of the shared world (life forms)

- not a calculation of given target variable, objective function
ICT-infrastructures IRL
speech: orality

- The shared world is constituted
The shared world is constituted
 - *By performative speech acts that create* institutional facts
The shared world is constituted
 - By performative speech acts that create institutional facts
 - Taking for granted similarly constituted facts as brute facts
The shared world is constituted

- By performative speech acts that create institutional facts
- Taking for granted similarly constituted facts as brute facts

- This is not a matter of voluntarism, nor of determinism
The shared world is constituted
- By performative speech acts that create institutional facts
- Taking for granted similarly constituted facts as brute facts
- This is not a matter of voluntarism, nor of determinism
- Our shared world is underdetermined, relational and ecological
The shared world is constituted
- By performative speech acts that create institutional facts
- Taking for granted similarly constituted facts as brute facts
- This is not a matter of voluntarism, nor of determinism
- Our shared world is underdetermined, relational and ecological
- Natural language combines
ICT-infrastructures IRL

speech: orality

- The shared world is constituted
 - By performative speech acts that create institutional facts
 - Taking for granted similarly constituted facts as brute facts

- This is not a matter of voluntarism, nor of determinism
- Our shared world is underdetermined, relational and ecological

- Natural language combines
 - stabilisation of meaning with adaptiveness and
 - the potential of novelty
 - against the background of shared life forms, patterns of interaction
 - the latter basically ‘count as’ brute facts
The complexity of our shared world is mediated by the script and further developed
The complexity of our shared world is mediated by the script and further developed

- with written speech acts that create more complex institutional facts
- due to the distantiation in time and space they afford
The complexity of our shared world is mediated by the script and further developed:
- with written speech acts that create more complex institutional facts
- due to the distantiation in time and space they afford
- requiring what Habermas and Luhmann called Kontingenzbewältigung
The complexity of our shared world is mediated by the script and further developed:
- with written speech acts that create more complex institutional facts
- due to the distanciation in time and space they afford
- requiring what Habermas and Luhmann called Kontingenzbewältigung

Legal written speech acts play a major role here:
- Legislation, case law, treaties, fundamental principles, doctrine
The complexity of our shared world is mediated by the script and further developed
- with written speech acts that create more complex institutional facts
- due to the distanciation in time and space they afford

- requiring what Habermas and Luhmann called Kontingenzbewältigung
 - Legal written speech acts play a major role here
 - Legislation, case law, treaties, fundamental principles, doctrine
 - They enable coordination of legitimate expectations
 - By attributing legal effect if specific legal conditions are fulfilled
ICT-infrastructures IRL

speech: computer code

- The complexity of our shared world becomes mediated
The complexity of our shared world becomes mediated
- By computationally-coded ‘speech acts’
The complexity of our shared world becomes mediated

- By computationally-coded ‘speech acts’
- Whose ‘performative effects’ depend on meaning attributed to
The complexity of our shared world becomes mediated

- By computationally-coded ‘speech acts’
- Whose ‘performative effects’ depend on meaning attributed to
 - Proxies (which), optimisation (for what), performance metrics (which)
The complexity of our shared world becomes mediated

- By computationally-coded ‘speech acts’
- Whose ‘performative effects’ depend on meaning attributed to
 - Proxies (which), optimisation (for what), performance metrics (which)
 - where most of the qualificatory design decisions (and their trade-offs) are hidden
The complexity of our shared world becomes mediated
- By computationally-coded ‘speech acts’
- Whose ‘performative effects’ depend on meaning attributed to
 - Proxies (which), optimisation (for what), performance metrics (which)
 - where most of the qualificatory design decisions (and their trade-offs) are hidden

The power relationships that were institutionalised under the rule of law
ICT-infrastructures IRL

speech: computer code

- The complexity of our shared world becomes mediated
 - By computationally-coded ‘speech acts’
 - Whose ‘performative effects’ depend on meaning attributed to
 - Proxies (which), optimisation (for what), performance metrics (which)
 - where most of the qualificatory design decisions (and their trade-offs) are hidden

- The power relationships that were institutionalised under the rule of law
 - are naked, invisible, not regulated in the case of coded speech acts
1. Preliminaries
2. On the shared Welt
3. On the shared Welt as in-formed by computing systems
4. The difference that makes a difference
5. Coded speech acts under the rule of law
The difference that makes a difference (Bateson)
The difference that makes a difference (Bateson)

If a computational system is deployed to e.g. predict legal judgments, that system
The difference that makes a difference (Bateson)

If a computational system is deployed to e.g. predict legal judgments, that system
- is simulating human judgments (NLP on law as data), and/or

27/10/21 written and coded speech acts
The difference that makes a difference (Bateson)

If a computational system is deployed to e.g. predict legal judgments, that system
- is simulating human judgments (NLP on law as data), and/or
- translating legal norms (Rules as Code, smart regulation)
The difference that makes a difference (Bateson)

If a computational system is deployed to e.g. predict legal judgments, that system
■ is simulating human judgments (NLP on law as data), and/or
■ translating legal norms (Rules as Code, smart regulation)

The system does not share our Welt
The difference that makes a difference (Bateson)

If a computational system is deployed to e.g. predict legal judgments, that system
■ is simulating human judgments (NLP on law as data), and/or
■ translating legal norms (Rules as Code, smart regulation)

The system does not share our Welt
■ Its cognition is not informed by the tacit background knowledge
The difference that makes a difference (Bateson)

If a computational system is deployed to e.g. predict legal judgments, that system

- is simulating human judgments (NLP on law as data), and/or
- translating legal norms (Rules as Code, smart regulation)

The system does not share our Welt

- Its cognition is not informed by the tacit background knowledge that enables us to navigate our shared Welt
The difference that makes a difference (Bateson)

If a computational system is deployed to e.g. predict legal judgments, that system
■ is simulating human judgments (NLP on law as data), and/or
■ translating legal norms (Rules as Code, smart regulation)

The system does not share our Welt
■ Its cognition is not informed by the tacit background knowledge
that enables us to navigate our shared Welt
The difference that makes a difference (Bateson)

If a computational system is deployed to e.g. predict legal judgments, that system
- is simulating human judgments (NLP on law as data), and/or
- translating legal norms (Rules as Code, smart regulation)

The system does not share our Welt
- Its cognition is not informed by the tacit background knowledge

that enables us to navigate our shared Welt
The difference that makes a difference (Bateson)

- The performative effects of computer coded speech acts depend on

- But the ‘performative effects’ also depend on
The performative effects of computer coded speech acts depend on
- acts of development, provision and deployment
- these acts attribute meaning to the design, functionality and use

But the ‘performative effects’ also depend on
The difference that makes a difference (Bateson)

- The performative effects of computer coded speech acts depend on
 - acts of development, provision and deployment
 - these acts attribute meaning to the design, functionality and use

- But the ‘performative effects’ also depend on
 - the ‘brute force’ of the code and its output:
 - decisions and behaviour
 - irrespective of meaning attributed
The difference that makes a difference (Bateson)
The difference that makes a difference (Bateson)

- Making things computable can be done in different ways
The difference that makes a difference (Bateson)

- Making things computable can be done in different ways
- The difference matters: design decisions have trade-offs
The difference that makes a difference (Bateson)

- Making things computable can be done in different ways
- The difference matters: design decisions have trade-offs
- Proxies potentially re-order how we perceive and cognize our shared Welt
The difference that makes a difference (Bateson)

- Making things computable can be done in different ways
- The difference matters: design decisions have trade-offs
- Proxies potentially re-order how we perceive and cognize our shared Welt
- Decisions on relevance, proxies, ground-truthing, formalisation shape our shared Welt
Making things computable can be done in different ways
The difference matters: design decisions have trade-offs
Proxies potentially re-order how we perceive and cognize our shared Welt
Decisions on relevance, proxies, ground-truthing, formalisation shape our shared Welt
And what actions it enables
The difference that makes a difference (Bateson)

- Making things computable can be done in different ways
- The difference matters: design decisions have trade-offs
- Proxies potentially re-order how we perceive and cognize our shared Welt
- Decisions on relevance, proxies, ground-truthing, formalisation shape our shared Welt
- And what actions it enables
- The political implications may be far reaching
The difference that makes a difference (Bateson)

- Making things computable can be done in different ways
- The difference matters: design decisions have trade-offs
- Proxies potentially re-order how we perceive and cognize our shared Welt
- Decisions on relevance, proxies, ground-truthing, formalisation shape our shared Welt
- And what actions it enables
- The political implications may be far reaching
- More so than what parliaments usually discuss
The difference that makes a difference (Bateson)

- Making things computable can be done in different ways
- The difference matters: design decisions have trade-offs
- Proxies potentially re-order how we perceive and cognize our shared Welt
- Decisions on relevance, proxies, ground-truthing, formalisation shape our shared Welt
- And what actions it enables
- The political implications may be far reaching
- More so than what parliaments usually discuss
- This is why a human ‘in the loop’ will not do
What’s new?

1. Preliminaries
2. On the shared Welt
3. On the shared Welt as in-formed by computing systems
4. The difference that makes a difference
5. Coded speech acts under the rule of law
Under the rule of law?

- Computing systems may afford or leverage power re-distributions
 - Economic, military, geopolitical
Under the rule of law?

- Computing systems may afford or leverage power re-distributions
 - Economic, military, geopolitical

- Their ‘speech acts’ should be brought under the rule of law:
 - Design, provision, deployment of computing systems cannot be part of a law-free zone
 - No ‘freies Ermessen’ for potentially high impact coded ‘speech acts’
Rule of law in a constitutional democracy is a normative undertaking:

- It aims to protect
Rule of law in a constitutional democracy is a normative undertaking:
- It aims to protect
 - the incomputable nature of human agency
 - a shared world that affords privacy, diversity, inclusion
 - transparency, accountability and contestability of big players
 - by way of a series of institutional checks and balances
 - notably ‘effective and practical’ fundamental rights
Under the rule of law?

- Rule of law in a constitutional democracy is a normative undertaking:
Rule of law in a constitutional democracy is a normative undertaking:

- Governments having equal respect and concern for each individual citizen
Rule of law in a constitutional democracy is a normative undertaking:
- Governments having equal respect and concern for each individual citizen
- The power that imposes legislation does not decide on its interpretation
- *Iudex non rex lex loquens*
Rule of law in a constitutional democracy is a normative undertaking:

- Governments having equal respect and concern for each individual citizen
- The power that imposes legislation does not decide on its interpretation
- Iudex non rex lex loquens
- Written legal speech acts are ambiguous, multi-interpretable and thus contestable
Under the rule of law?

- Rule of law in a constitutional democracy is a normative undertaking:
Rule of law in a constitutional democracy is a normative undertaking:

- Coded ‘speech acts’ must be contestable insofar as they impact fundamental rights
Rule of law in a constitutional democracy is a normative undertaking:
- Coded ‘speech acts’ must be contestable insofar as they impact fundamental rights
- This is directly related to the fact that they ‘make things that matter computable’
- In one way or another
Rule of law in a constitutional democracy is a normative undertaking:
- Coded ‘speech acts’ must be contestable insofar as they impact fundamental rights
- This is directly related to the fact that they ‘make things that matter computable’
 - In one way or another
- Contestability implies speech acts rooted in our shared world
Under the rule of law?

- Rule of law in a constitutional democracy is a normative undertaking:
 - Coded ‘speech acts’ must be contestable insofar as they impact fundamental rights
 - This is directly related to the fact that they ‘make things that matter computable’
 - In one way or another
 - Contestability implies speech acts rooted in our shared world
 - This is where written and coded speech acts meet:
 - Discussing design choices and anticipated decisions and behaviour of the systems built
 - This is not about ethics but about who has the power to decide
Closure