Cyber-Physical Programming

Challenge and Response

Michael Jackson The Open University jacksonma@acm.org

HaPoC Zuerich 27-29 October 2021

HaPoCZuerich2021Vn9-1

Cyber-Physical Programming

- 1 CP System Examples
- 2 Behaviour Structure
- 3 The Bipartite System
- 4 Programmability
- 5 Causality

- 6 Causal Failures
- 7 Axioms & Behaviours
- 8 Triplets
- 9 Model Structure

10 Envoi

1 CP System Examples

Cyber = steer or govern (specifically: real world BEHAVIOUR) Physical = CONCRETE tangible world (mechatronic, natural, built, people, etc etc)

Many dimensions of variety (COMPLEXITY, phenomena, size, locality, CRITICALITY, ..)

2 Behaviour Structure

* Many CP systems have complex behaviour

Self-park, limit speed, cruise control, antiskid braking, air conditioning, clean charcoal filter, custom driver options, emission test, software update, fuel management, active suspension, ignition cycle, stop-start ...

- * **CONSTITUENT** behaviours: **CONCURRENT**, terminating or not
 - * **INTERACTING** both in software and in the physical world (parts of the physical world act as shared variables)
 - * Mutual incompatibilities (eg aircon and stop-start)
- * System behaviour involves much more than the car itself (driver, road, weather, visibility, other road users, ...)

3 The Bipartite System

* The system to program has 2 parts: MACHINE M + WORLD W

- * Domains are **ENTITIES** participating in **PHYSICAL BEHAVIOUR**
 - * M, W share phenomena at interface domains
 - (M: only shown; W: □, include human participants)
- * \implies = Abstract program text \rightarrow concrete M/C CODE FOR M
 - * An inescapable (formerly manual) refinement task

4 Programmability

- * M is fully programmable
 - * Store and traverse a graph of m/c instructions
 - * Specified instruction effects ('add', 'jump', ...) are AXIOMS
 - * Instruction execution is **RELIABLE** (though imperfectly)
- * W is only partly programmable
 - * Exernal programs only: W has no store and traverse
 - * "Instructions" are shared phenomena at interface
 - * The world is not formal: "axioms" are **CONTINGENT**
 - * W's interface and other domains are UNRELIABLE

5 Causality

* How can M govern W beyond the interface domains?

- * W "axioms" are CAUSAL LINKS in/between domains
 - * Causes and effects are events, states, ...
- * Each causal link has an EFFECTUATING DOMAIN D in Wi specifies conditions (eg current state of D)
- * Cause --> effect may be M --> W or W --> M
 - * 'Activator' and 'Sensor' are relative terms
- * Causality **SEMANTICS** may be intricate (INHIBITION etc)
 - * Causality is the logic of **CONTRIVANCES** [Polanyi]

6 Causal Failures

* Some historic failures of causality modelling

- * Reverse thrust only if plane is on ground
 * Flooded runway: no wheel rotation caused
- Warsaw A320
- * 'Rolling' landing: only one leg compressed
- Causal link from relief valve to indicator ..
 .. was not imputed to any identified domain
- * Relief valve stuck open but indicated closed

3 Mile Island

- * 1960:USSR missile strike launch indicated
 * Radar link: cause should be strike launch ...
 - .. but was unexpected position of rising moon

7 Axioms & Behaviours

- * Why AXIOMS? Judiciously chosen UNQUESTIONED ASSUMPTIONS
 - * An allusion to Euclid's axioms ..
 - .. defining the basis for constructions
- * Why are axioms CAUSAL LINKS?
 - * Because a CPS is a **CONTRIVANCE**
 - * Is 'the LOGIC of CONTRIVING' [Polanyi] causality?
- * Surely the laws of physics are the necessary axioms?
 - * True? Of course! Useful? sometimes! Sufficient? No!
 - * Scales; shapes; discrete properties; juxtapositions

8 Triplets

* W axioms support development of system BEHAVIOUR
 * Model (axioms) must be GLOBAL wrt behaviour activations

- * **TRIPLET**: microcosmic CP system, one constituent behaviour
 - * Triplet i = {Mi program, Wi model, Bi behaviour Mi||Wi}
 - * Bi combines contributions from both Mi and Wi
 - * Wi model: axioms required to support Bi activation
- * **DEVELOP** a triplet and **COMBINE** with others
 - * Triplet activations are linked by their program texts
 - * Combining is a separate (possibly invasive) task

9 Model Structure

- * MODELLING-IN-THE-LARGE: structured wrt BEHAVIOURS
 - * Wi model must hold during enactment of behaviour Bi so model structure is behaviour enactment structure
- * MODELLING-IN-THE-SMALL: **A**, **B**, **C** are distinct aspects
 - * AXIOMS for Wi are causal links in and between Wi domains
 - * **B**EHAVIOUR Bi = Mi||Wi (eg state machine, trace set, ...)
 - * **C**ONSEQUENCES of Bi (satisfying relevant requirements)
- * Modelling as a discipline
 - * Rigorous **DENOTATIONS** in the physical world
 - * Corpus of identified MODEL FAILURE CONCERNS

10 Envoi

- * Reliable programming of an unreliable world
 - * **CO-DESIGN** Mi program and Wi model
 - * Both content and structure
- * A COMPUTING SCIENCE perspective
 - * FORMAL SPECIFICATION for M is IMPOSSIBLE ..
 - .. because W does not support reliable abstraction
- * Are CPS development CHALLENGES relevant for CS?
- * Where is CS most relevant to CPS development?

Thank you

HaPoCZuerich2021Vn9-13