
One concurrent program: three
attempts at its formal verification

Cliff Jones

Newcastle University

ETH zürich (by Zoom)

Funding:

2021
HaPoC

Turing Centre

6th International Conference on the
History and Philosophy of Computing

Zurich, October 27-29, 2021

PROGRAM AND SHORT ABSTRACTS

Context: (coarse) timeline

• von Neuman, Post, Turing

• Bob Floyd [Flo67], Tony Hoare [Hoa69]

• Ed Ashcroft & Zohar Manna [AM71]

• Ashcroft [Ash75]

• Susan Owicki [Owi75]

sequential programs

concurrency

2

Today!
• original aim: history context + go through 3 proofs

• what’s achievable on slides (in 25 minutes)

• more on history (discuss “linear account?”)

• main conclusions from the (small type) proofs

• reverse historical because …

• Chapter 5 of a forthcoming book (proofs are all written in detail)

• possibly a paper?

3

“Floyd style” [Flo67][Floyd67]

44

add assertions to flowchart

“state/memory assertions”

formal rules for consistency

Why concurrency is difficult
• one key issue: “interference”

• x := 1 || x := 2

• Other || (x := 42; if x=42 then … else …)

• moving money between bank accounts

• atomicity!

• x := x + 1

• if x = x then …

5

In Stanford
• Zohar Manna

• CMU (previously “Carnegie Tech”) 1968 PhD with Bob Floyd + Al Perlis

• (Jones (visited Floyd 1967 +) MTOC 1967-11)

• paper on translating programs into predicate calculus: termination [Man69]

• moved to Stanford 1969 (non-deterministic programs [Man70])

• Ed Ashcroft

• London Uni PhD (awarded 1970, suspect moved to Stanford earlier)

6

concurrency as non-determinism

S1

T

S2

and

T

S1

S2

S1

T

S2

S1

S2

T

or

7

concurrency as non-determinism
S1 T1 (even straight line)

exponential number of merges

(n+m)!/(n!*m!)

n=m=5: 252

n=m=10: >150 k

n=m=15: >155 million

then prove each alternative!

S2

Sn

.

.

.

T2

.

.

.

Tm

8

Ashcroft/Manna [AM71]

NB: right thread

has one statement

+

care!

9

Issues with Ashcroft/Manna
• very much Floyd based: annotated flow charts

• (rather than structured combinators)

• only a passing reference to [Hoare69]

• all but one example are schemas (no specifications)

• post-facto verification (= “bottom-up” approach)

• assignments (and tests) assumed to execute atomically

• exponential expansion + non-trivial expansion of loops/conditionals

• “blocks” as a way to reduce expansion

10

Avoiding expansion: Ashcroft (at Waterloo)
[Ash75] submitted 1973

• (in addition to “memory states”) Ashcroft used “control states”

• think of as fingers on what can execute next in each thread

• shades of VDL “control trees” (Ashcroft’s PhD with John Florentin + IBM link)

• (potentially) still have exponential combinations

• but can look for ways to combine cases - without (initial) expansion

• hints here of how “Temporal Logic” separates proofs from programs

• a significant example: airline reservation (simplified)

• still effectively ignores [Hoa69]

11

Issues for Ashcroft
• observation: “concurrency as stimulus for formal verification”

• still post-facto verification

• the starting point for verification is a finished program

• atomicity still unrealistic

• recently re-discovered his Jan 1972 Las Cruces paper

• also interesting: Matthew Hennessy did his (Waterloo) PhD with Ashcroft

• Hennessy/Milner: process algebras

• later: Ashcroft/Wadge on “Lucid”

12

Enter: Susan Owicki
• (met again during recent “interview”)

• 1975 Cornell thesis [Owi75]

• cites 1973 draft of Ashcroft’s paper

• (order of pages in Cornell on-line copy is wrong)

• joint paper with supervisor David Gries [OG76]

• normally referred to as “Owicki/Gries” approach

• IFIP WG2.3 influences (and served to amplify)

• clearly Hoare-based: Hoare-like proofs of the independent threads

• followed (crucially) by “interference freedom” proof obligation

S1 T1

S2

Sn

.

.

.

T2

.

.

.

Tm

13

Hoare style [Hoa69]280 G prep Figs for C’s HaPoC

Sequential composition:

sequence

{P} S1 {Q}
{Q} S2 {R}

{P} S1; S2 {R}

Iteration:

while
{P ^ b} S {P}

{P} while b do S od {P ^ ¬ b}

Conditional:

if

{P ^ b} S1 {Q}
{P ^ ¬ b} S2 {Q}

{P} if b then S1 else S2 fi {Q}

Assignment:

:= {Pe
x } x := e {P}

where P
e
x is the result of systematically substituting the expression e for

every free occurrence of the identifier x throughout P .

“triples” as judgements

inference rules

lent itself to “development”

[Hoa71]

“top-down” = “posit and prove”

[Floyd67]

44

A useful example:
Findpos - sequential

Appendix G

prep Figs for C’s HaPoC

to be deleted!

Findp:
c := 1; t := M + 1;
search:

while c < t do

if x (c) > 0 then t := c
else c := c + 1

277

15

Findpos - (only) parallel
278 G prep Figs for C’s HaPoC

Findp:
ec := 2; oc := 1; et := ot := M + 1;
cobegin

Even:while ec < et do

if x (ec) > 0 then et := ec
else ec := ec + 2

|| Odd :while oc < ot do

if x (oc) > 0 then ot := oc
else oc := oc + 2

coend

t := min(ot , et)
end

16

Findpos - concurrent
G prep Figs for C’s HaPoC 279

Findp:
ec := 2; oc := 1; et := ot := M + 1;
cobegin

Even:while ec < min(ot , et) do

if x (ec) > 0 then et := ec
else ec := ec + 2

|| Odd :while oc < min(ot , et) do

if x (oc) > 0 then ot := oc
else oc := oc + 2

coend

t := min(ot , et)
end

17

94 5 Post-facto program verification

Findpos: begin

Initialize: ec := 2; oc := 1; et := ot :=M + 1;
{ec = 2 ^ oc = 1 ^ et = ot = M + 1}

Search: cobegin
{ES}

Evensearch:while ec < min(ot , et) do

{ES ^ ec < et ^ ec < M + 1}
Eventest : if x(ec) > 0

then {ES ^ ec < et ^ i < M + 1 ^ x(ec) > 0} Evenyes: et := ec {ES}
else {ES ^ ec < et ^ x(ec)  0} Evenno: ec := ec + 2 {ES}
fi

{ES}
od

{ES ^ ec � min(ot , et)}
||

{OS}
Oddsearch:while oc < min(ot , et) do

{OS ^ oc < ot ^ oc < M + 1}
Oddtest : if x(oc) > 0

then {OS ^ oc < ot ^ oc < M + 1 ^ x(oc) > 0} Oddyes: ot := oc {OS}
else {OS ^ oc < ot ^ x(oc)  0} Oddno: oc := oc + 2 {OS}
fi

{OS}
od

{OS ^ oc � min(ot , et)}
coend

{OS ^ ES ^ ec � min(ot , et) ^ oc � min(ot , et)}
t :=min(ot , et)

{t  M + 1 ^ (t  M) x(t) > 0) ^ 8i · 0 < n < t) x(n)  0}
end

Where:

ES =

8
>><

>>:

even(ec)^
et  M + 1^
(et  M) x(et) > 0)^
8n · even(n) ^ 0 < n < ec) x(n)  0

9
>>=

>>;

OS =

8
>><

>>:

odd(oc)^
ot  M + 1^
(ot  M) x(ot) > 0)^
8n · odd(n) ^ 0 < n < oc) x(n)  0

9
>>=

>>;

Breakout 5.2: Partial correctness proof of Findpos from [Owi75]

For what has to be done at the next stage, it is essential that there is
an assertion at every point in the program. Looking at Breakout 5.2, this
appears to be a substantial task but, as in Floyd’s [Flo67], most of the as-
sertions can be generated mechanically. Thus far, interference is ignored: the
reasoning about threads is done as though they were sequential programs
with no changes to the values of their variables other than in the code of the
thread.

Add a “few” details:

(need assertions

between all statements)

S1 T1

S2

Sn

.

.

.

T2

.

.

.

Tm

18

“Owicki-Gries” approach
• Hoare-style proofs of separate threads

• could have been “development”

• but do need all assertions for …

• but: the “interference freedom” PO is post-facto

• if fails: start from beginning!

• atomicity

19

Findpos in Ashcroft’s approach

• similar proof load

• I actually re-used Owicki’s predicate definitions

• (full proof available in forthcoming book)

20

Add quite a “few” details!

5.4 Earlier approaches revisited 101

Program:

Findpos: ec := 2; oc := 1; et := ot :=M + 1;
Search: fork go to(Evensearch,Oddsearch);
Evensearch: if ec < min(ot , et) then go to Eventest else go to J ;

Eventest : if x(ec) > 0 then go to Evenyes else go to Evenno;
Evenyes: et := ec; go to Evensearch;
Evenno: ec := ec + 2; go to Evensearch;

Oddsearch: if oc < min(ot , et) then go to Oddtest else go to J ;
Oddtest : if x(oc) > 0 then go to Oddyes else go to Oddno;

Oddyes: ot := oc; go to Oddsearch;
Oddno: oc := oc + 2; go to Oddsearch;

J : join(Evensearch,Oddsearch);
t :=min(ot , et);
F :HALT

The step to label Search is sequential so the control state c is a unit set and the state
assertion is:

c = {Search}: ec = 2 ^ oc = 1 ^ et = ot = M + 1

Using the same definitions as in Breakout 5.2:

ES =

8
>><

>>:

even(i)^
et  M + 1^
(et  M) x(et) > 0)^
8n · even(n) ^ 0 < n < ec) x(n)  0

9
>>=

>>;

OS =

8
>><

>>:

odd(oc)^
ot  M + 1^
(ot  M) x(ot) > 0)^
8n · odd(n) ^ 0 < n < oc) x(n)  0

9
>>=

>>;

It is su�cient to consider groups of control states as follows (with their attached state
assertions):

Evensearch 2 c:ES
Eventest 2 c:ES ^ ec < et ^ ec < M + 1
Evenyes 2 c:ES ^ ec < et ^ ec < M + 1 ^ x(ec) > 0
Evenno 2 c:ES ^ ec < et ^ x(ec)  0

Each of these steps follows by standard Floyd-like reasoning because there is no damaging
interference. (Again the reasoning for the other thread is completely symmetric.)

The only di�cult step is proving that both steps from Evensearch and Oddsearch to J are
correct.

c = {J}:ES ^OS ^ ec � min(ot , et) ^ oc � min(ot , et)

since c = {Evensearch,Oddyes} indicates that ot can be changed after the test. To con-
clude that the negation of that test is still true at J , it is necessary to note that:

ec � min(ot , et) ^ ot 0 = oc ^ oc < ot) ec � min(ot 0, et)

The final step from J to F is again sequential reasoning (singleton control states):

c = {F}: t  M + 1 ^ (t  M) x(t) > 0) ^ 8i · 0 < i < t) x(i)  0

T: It looks like the key aspects of this verification are:
a) the use of 2 for control states;
b) priming ot in the penultimate assertion.
Are these tools that Ashcroft used?

Breakout 5.4: Ashcroft-style verification of Findpos (see Fig. 5.6)

21

Findpos in Ashcroft/Manna??

• they don’t actually give a mapping algorithm

• they give a fairly general example

• (concurrent to non-deterministic programs)

• the merge is too large!

• because loops+conditionals in both branches

22

Key insights
• concurrency can be replaced by non-determinacy [AshcroftManna]

• but identification of “atomic steps” must be honest

• keeping track of all potential next steps can avoid expansion [Ashcroft]

• points to separation of program and its justification

• “interference freedom” localises the pain [Owicki]

• “bottom-up” uses proof to replace testing

• (IMHO) formal methods pay off in design

23

“Atomicity” = a problem for all
• x := x +1

• if x = x then … else …

• “Reynolds’ rule” doesn’t solve the problem;

• t := x; t := t + 1; x := t

• it just exposes it

• (nor did John own it!)

• BTW there are neater versions of Findpos

24

Enhanced time line

on apparent linearity:

I’ve focussed on 1 strand

+ fewer researchers in the 70s

25

Floyd [Flo67]
Manna 68 69
Hoare 69 71 75
AM 71
Ashcroft 73 75
Owicki 75

Rely/Guar 81
CSL 07

