One concurrent program: three attempts at its formal verification

Cliff Jones
Newcastle University

ETH zürich (by Zoom)
Context: (coarse) timeline

- von Neuman, Post, Turing
- Bob Floyd [Flo67], Tony Hoare [Hoa69]
- Ed Ashcroft & Zohar Manna [AM71]
- Ashcroft [Ash75]
- Susan Owicki [Owi75]

sequential programs
concurrency
Today!

• original aim: history context + go through 3 proofs

• what’s achievable on slides (in 25 minutes)
 • more on history (discuss “linear account?”)
 • main conclusions from the (small type) proofs
 • reverse historical because …

• Chapter 5 of a forthcoming book (proofs are all written in detail)
 • possibly a paper?
add assertions to flowchart
“state/memory assertions”
formal rules for consistency
Why concurrency is difficult

• one key issue: “interference”
 • \(x := 1 \parallel x := 2 \)
 • Other \(\parallel \) (\(x := 42; \) if \(x=42 \) then … else …)
 • moving money between bank accounts
• atomicity!
 • \(x := x + 1 \)
 • if \(x = x \) then …
In Stanford

• Zohar Manna
 • CMU (previously “Carnegie Tech”) 1968 PhD with Bob Floyd + Al Perlis
 • (Jones (visited Floyd 1967 +) MTOC 1967-11)
 • paper on translating programs into predicate calculus: termination [Man69]
 • moved to Stanford 1969 (non-deterministic programs [Man70])

• Ed Ashcroft
 • London Uni PhD (awarded 1970, suspect moved to Stanford earlier)
concurrency as non-determinism
concurrency as non-determinism

(even straight line)
exponential number of merges

\[(n+m)!/(n!*m!)

n=m=5: 252
n=m=10: >150 k
n=m=15: >155 million

then prove each alternative!
Ashcroft/Manna [AM71]

NB: right thread has one statement + care!
Issues with Ashcroft/Manna

• very much Floyd based: annotated flow charts
 • (rather than structured combinators)
 • only a passing reference to [Hoare69]
 • all but one example are schemas (no specifications)
• post-facto verification (= “bottom-up” approach)
• assignments (and tests) assumed to execute atomically
• exponential expansion + non-trivial expansion of loops/conditionals
 • “blocks” as a way to reduce expansion
Avoiding expansion: Ashcroft (at Waterloo) [Ash75] submitted 1973

• (in addition to “memory states”) Ashcroft used “control states”

 • think of as fingers on what can execute next in each thread

 • shades of VDL “control trees” (Ashcroft’s PhD with John Florentin + IBM link)

• (potentially) still have exponential combinations

 • but can look for ways to combine cases - without (initial) expansion

 • hints here of how “Temporal Logic” separates proofs from programs

• a significant example: airline reservation (simplified)

• still effectively ignores [Hoa69]
Issues for Ashcroft

• observation: “concurrency as stimulus for formal verification”

• still post-facto verification
 • the starting point for verification is a finished program

• atomicity still unrealistic

• recently re-discovered his Jan 1972 Las Cruces paper

• also interesting: Matthew Hennessy did his (Waterloo) PhD with Ashcroft
 • Hennessy/Milner: process algebras

• later: Ashcroft/Wadge on “Lucid”
Enter: Susan Owicki

• (met again during recent “interview”)

• 1975 Cornell thesis [Owi75]
 • cites 1973 draft of Ashcroft’s paper
 • (order of pages in Cornell on-line copy is wrong)

• joint paper with supervisor David Gries [OG76]
 • normally referred to as “Owicki/Gries” approach

• IFIP WG2.3 influences (and served to amplify)

• clearly Hoare-based: Hoare-like proofs of the independent threads
 • followed (crucially) by “interference freedom” proof obligation
Hoare style \([\text{Hoa}69]\)

Sequential composition:

\[
\{P\} \quad S_1 \quad \{Q\} \\
\{Q\} \quad S_2 \quad \{R\} \\
\text{sequence} \quad \{P\} \quad S_1; \quad S_2 \quad \{R\}
\]

Iteration:

\[
\{P \land b\} \quad S \quad \{P\} \\
\{P\} \quad \text{while } b \text{ do } S \text{ od } \{P \land \neg b\}
\]

Conditional:

\[
\{P \land b\} \quad S_1 \quad \{Q\} \\
\{P \land \neg b\} \quad S_2 \quad \{Q\} \\
\text{if } \{P\} \quad \text{if } b \text{ then } S_1 \text{ else } S_2 \text{ fi } \{Q\}
\]

Assignment:

\[
:= \quad \{P^e_x\} \quad x := e \quad \{P\}
\]

where \(P^e_x\) is the result of systematically substituting the expression \(e\) for every free occurrence of the identifier \(x\) throughout \(P\).
A useful example:

Findpos - sequential

Findp:

\[c := 1; \quad t := M + 1; \]

search:

\[\text{while } c < t \text{ do} \]

\[\quad \text{if } x(c) > 0 \text{ then } t := c \]

\[\quad \text{else } c := c + 1 \]
Findpos - (only) parallel

Findp:

\[ec := 2; \quad oc := 1; \quad et := ot := M + 1; \]

\text{cobegin}

\text{Even: while } ec < et \text{ do }
\quad \text{if } x(ec) > 0 \text{ then } et := ec \\
\quad \text{else } ec := ec + 2 \\
\text{coend}

\text{Odd: while } oc < ot \text{ do }
\quad \text{if } x(oc) > 0 \text{ then } ot := oc \\
\quad \text{else } oc := oc + 2 \\

\text{t := min(ot, et)}

end
Findpos - concurrent

\[\text{Findp:} \]
\[ec := 2; \quad oc := 1; \quad et := ot := M + 1; \]
\[\text{cobegin} \]
\[\text{Even: while } ec < \min(ot, et) \text{ do} \quad \text{Odd: while } oc < \min(ot, et) \text{ do} \]
\[\quad \text{if } x(ec) > 0 \text{ then } et := ec \quad \text{if } x(oc) > 0 \text{ then } ot := oc \]
\[\quad \text{else } ec := ec + 2 \quad \text{else } oc := oc + 2 \]
\[\text{coend} \]
\[t := \min(ot, et) \]
\[\text{end} \]
Findpos: begin
Initialize: \(ec := 2; \ oc := 1; \ et := ot := M + 1; \)
\{ ec = 2 \land \ oc = 1 \land \ et = ot = M + 1 \}
Search: cobegin
\{ ES \}
Evensearch: while \(ec < \min(ot, et) \) do
\{ ES \land ec < et \land \ ec < M + 1 \}
Eventest: if \(x(ec) > 0 \) then
\{ ES \land ec < et \land \ i < M + 1 \land x(ec) > 0 \}
Evenyes: \(et := ec \) \{ ES \}
else
\{ ES \land ec < et \land x(ec) \leq 0 \}
Evenno: \(ec := ec + 2 \) \{ ES \}
fi
od
\{ ES \land ec \geq \min(ot, et) \}
||
\{ OS \}
Oddsearch: while \(oc < \min(ot, et) \) do
\{ OS \land oc < at \land \ oc < M + 1 \}
Oddtest: if \(x(oc) > 0 \) then
\{ OS \land oc < at \land \ oc < M + 1 \land x(oc) > 0 \}
Oddyes: \(ot := oc \) \{ OS \}
else
\{ OS \land oc < at \land x(oc) \leq 0 \}
Oddno: \(oc := oc + 2 \) \{ OS \}
fi
od
\{ OS \land oc \geq \min(ot, et) \}
coend
\{ OS \land ES \land ec \geq \min(ot, et) \land oc \geq \min(ot, et) \}
t := \min(ot, et)
\{ t \leq M + 1 \land (t \leq M \Rightarrow x(t) > 0) \land \forall i \cdot 0 < n < t \Rightarrow x(n) \leq 0 \}
end
Where:
\[ES = \left\{ \begin{array}{l} \text{even}(ec) \land \\
\text{et} \leq M + 1 \land \\
(\text{et} \leq M \Rightarrow x(\text{et}) > 0) \land \\
\forall n \cdot \text{even}(n) \land 0 < n < \text{ec} \Rightarrow x(n) \leq 0 \\
\text{odd}(ec) \land \\
\text{et} \leq M + 1 \land \\
(\text{et} \leq M \Rightarrow x(\text{et}) > 0) \land \\
\forall n \cdot \text{odd}(n) \land 0 < n < \text{oc} \Rightarrow x(n) \leq 0 \\
\end{array} \right. \]
\[OS = \left\{ \begin{array}{l} \text{odd}(oc) \land \\
\text{ot} \leq M + 1 \land \\
(\text{ot} \leq M \Rightarrow x(\text{ot}) > 0) \land \\
\forall n \cdot \text{odd}(n) \land 0 < n < \text{oc} \Rightarrow x(n) \leq 0 \\
\end{array} \right. \]

Breakout 5.2: Partial correctness proof of Findpos from [Owi75]
“Owicki-Gries” approach

- Hoare-style proofs of separate threads
 - could have been “development”
 - but do need all assertions for …
 - but: the “interference freedom” PO is post-facto
 - if fails: start from beginning!
- atomicity
Findpos in Ashcroft’s approach

- similar proof load
 - I actually re-used Owicki’s predicate definitions
- (full proof available in forthcoming book)
The final step from \(\text{Evensearch} \) concludes that the negation of that test is still true at
\(\text{Evenno} \); \(\text{Oddsearch} \); \(\text{Oddtest} \) and \(\text{Oddno} \)
are again sequential reasoning (singleton control states):
\[c = \{ J \}: ES \land OS \land ec \geq \min(ot, et) \land oc \geq \min(ot, et) \]
since \(c = \{ \text{Evensearch}, \text{Oddyes} \} \) indicates that \(ot \) can be changed after the test. To conclude that the negation of that test is still true at \(J \), it is necessary to note that:
\[ec \geq \min(ot, et) \land ot' = oc \land oc < ot \Rightarrow ec \geq \min(ot', et) \]
The final step from \(J \) to \(F \) is again sequential reasoning (singleton control states):
\[c = \{ F \}: t \leq M + 1 \land (t \leq M \Rightarrow x(t) > 0) \land \forall i: 0 < i < t \Rightarrow x(i) \leq 0 \]
Findpos in Ashcroft/Manna??

- they don’t actually give a mapping *algorithm*
- they give a fairly general example
 - (concurrent to non-deterministic programs)
- the merge is too large!
 - because loops+conditionals in *both* branches
Key insights

• concurrency can be replaced by non-determinacy [AshcroftManna]

 • but identification of “atomic steps” must be honest

• keeping track of all potential next steps can avoid expansion [Ashcroft]

 • points to separation of program and its justification

• “interference freedom” localises the pain [Owicki]

• “bottom-up” uses proof to replace testing

 • (IMHO) formal methods pay off in design
“Atomicity” = a problem for all

• \(x := x + 1 \)

• \(\text{if } x = x \text{ then } \ldots \text{ else } \ldots \)

• “Reynolds’ rule” doesn’t solve the problem;
 • \(t := x; t := t + 1; x := t \)
 • it just exposes it
 • (nor did John own it!)

• BTW there are neater versions of \textit{Findpos}
Enhanced time line

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Floyd</td>
<td>[Flo67]</td>
<td>68</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Manna</td>
<td></td>
<td>68</td>
<td>69</td>
<td>71</td>
</tr>
<tr>
<td>Hoare</td>
<td></td>
<td>69</td>
<td>71</td>
<td>75</td>
</tr>
<tr>
<td>AM</td>
<td></td>
<td>68</td>
<td>69</td>
<td>71</td>
</tr>
<tr>
<td>Ashcroft</td>
<td></td>
<td>68</td>
<td>69</td>
<td>71</td>
</tr>
<tr>
<td>Owicki</td>
<td></td>
<td>68</td>
<td>69</td>
<td>71</td>
</tr>
</tbody>
</table>

on apparent linearity:
I’ve focussed on 1 strand
+ fewer researchers in the 70s