One concurrent program: three attempts at its formal verification

Cliff Jones
Newcastle University

HaPoC ETH zürich (by Zoom)
LEVERHULME
TRUST \qquad

Context: (coarse) timeline

- von Neuman, Post, Turing
- Bob Floyd [Flo67], Tony Hoare [Hoa69]
- Ed Ashcroft \& Zohar Manna [AM71]
- Ashcroft [Ash75]
- Susan Owicki [Owi75]
sequential programs
concurrency

Today!

- original aim: history context + go through 3 proofs
- what's achievable on slides (in 25 minutes)
- more on history (discuss "linear account?")
- main conclusions from the (small type) proofs
- reverse historical because ...
- Chapter 5 of a forthcoming book (proofs are all written in detail)
- possibly a paper?

add assertions to flowchart "state/memory assertions"
formal rules for consistency

Pigure 5.
Algortitho to compute quotient: Q and wemindar R of $X+X$ for satagess $x \geqslant 0$,

Why concurrency is difficult

- one key issue: "interference"
- $x:=1| | x:=2$
- Other || ($x:=42$; if $x=42$ then ... else ...)
- moving money between bank accounts
- atomicity!
- $x:=x+1$
- if $x=x$ then ...

In Stanforo

- Zohar Manna
- CMU (previously "Carnegie Tech") 1968 PhD with Bob Floyd + Al Perlis
- (Jones (visited Floyd 1967 +) MTOC 1967-11)
- paper on translating programs into predicate calculus: termination [Man69]
- moved to Stanford 1969 (non-deterministic programs [Man70])
- Ed Ashcroft
- London Uni PhD (awarded 1970, suspect moved to Stanford earlier)

concurrency as non-determinism

concurrency as non-determinism

(even straight line)
exponential number of merges
(n+m)!/(n!*m!)
$\mathrm{n}=\mathrm{m}=5: 252$
$n=m=10:>150 k$
$n=m=15:>155$ million
then prove each alternative!

Ashcroft/Manna [AM71]

NB: right thread has one statement

$+$
care!

Issues with Ashcroft/Manna

- very much Floyd based: annotated flow charts
- (rather than structured combinators)
- only a passing reference to [Hoare69]
- all but one example are schemas (no specifications)
- post-facto verification (= "bottom-up" approach)
- assignments (and tests) assumed to execute atomically
- exponential expansion + non-trivial expansion of loops/conditionals
- "blocks" as a way to reduce expansion

Avoiding expansion: Ashcroft (at Waterloo) [Ash75] submitted 1973

- (in addition to "memory states") Ashcroft used "control states"
- think of as fingers on what can execute next in each thread
- shades of VDL "control trees" (Ashcroft's PhD with John Florentin + IBM link)
- (potentially) still have exponential combinations
- but can look for ways to combine cases - without (initial) expansion
- hints here of how "Temporal Logic" separates proofs from programs
- a significant example: airline reservation (simplified)
- still effectively ignores [Hoa69]

Issues for Ashcroft

- observation: "concurrency as stimulus for formal verification"
- still post-facto verification
- the starting point for verification is a finished program
- atomicity still unrealistic
- recently re-discovered his Jan 1972 Las Cruces paper
- also interesting: Matthew Hennessy did his (Waterloo) PhD with Ashcroft
- Hennessy/Milner: process algebras
- later: Ashcroft/Wadge on "Lucid"

Enter: Susan Owicki

- (met again during recent "interview")
- 1975 Cornell thesis [Owi75]
- cites 1973 draft of Ashcroft's paper
- (order of pages in Cornell on-line copy is wrong)
- joint paper with supervisor David Gries [OG76]
- normally referred to as "Owicki/Gries" approach
- IFIP WG2.3 influences (and served to amplify)
- clearly Hoare-based: Hoare-like proofs of the independent threads

- followed (crucially) by "interference freedom" proof obligation

Hoare style [Hoa69]
 Sequential composition:

$$
\begin{array}{cc}
\{P\} & S 1 \quad\{Q\} \\
\text { sequence } & \begin{array}{c}
\{Q\} \\
\{P 2
\end{array} \frac{S R\}}{}\{1 ; S 2\{R\}
\end{array}
$$

Iteration:

while $\frac{\{P \wedge b\} S\{P\}}{\{P\} \text { while } b \text { do } S \text { od }\{P \wedge \neg b\}}$

Conditional:

$$
\begin{gathered}
\{P \wedge b\} S 1\{Q\} \\
\text { if } \frac{\{P \wedge \neg b\} S 2\{Q\}}{\{P\} \text { if } b \text { then } S 1 \text { else } S 2 \text { fi }\{Q\}}
\end{gathered}
$$

"triples" as judgements inference rules
lent itself to "development" [Hoa71]
"top-down" = "posit and prove"

Assignment:
$:=\overline{\left\{P_{x}^{e}\right\} \quad x:=e\{P\}}$
where P_{x}^{e} is the result of systematically substituting the expression e for every free occurrence of the identifier x throughout P.

A useful example:
 Findpos - sequential

Findp:

$$
c:=1 ; t:=M+1 ;
$$

search:

$$
\begin{aligned}
& \text { while } c<t \text { do } \\
& \quad \text { if } x(c)>0 \text { then } t:=c \\
& \text { else } c:=c+1
\end{aligned}
$$

Findpos - (only) parallel

Findp:
ec $:=2 ;$ oc $:=1 ;$ et $:=$ ot $:=M+1 ;$
cobegin
Even: while ec <et do
if $x(e c)>0$ then et $:=e c$ else $e c:=e c+2$
$O d d$: while $o c<$ ot do
if $x(o c)>0$ then ot $:=o c$ else $o c:=o c+2$
coend
$t:=\min (o t, e t)$
end

Findpos - concurrent

Findp:
ec $:=2 ;$ oc $:=1$; et $:=$ ot $:=M+1$;
cobegin
Even: while $e c<\min (o t$, et) do if $x(e c)>0$ then et $:=e c$ else $e c:=e c+2$
coend
$t:=\min (o t, e t)$
end
$O d d$:while $o c<\min (o t, e t)$ do if $x(o c)>0$ then $o t:=o c$ else $o c:=o c+2$

Add a "few" details:

 (need assertions between all statements)```
Findpos: begin
 Initialize: ec \(:=2 ;\) oc \(:=1\); et \(:=\) ot \(:=M+1\);
 \(\{e c=2 \wedge o c=1 \wedge e t=o t=M+1\}\)
 Search: cobegin
 Search: cobegin
 Evensearch: while \(e c<\min (o t, e t)\) do
 \(\{E S \wedge e c<e t \wedge e c<M+1\}\)
 Eventest: if \(x(e c)>0\)
 then \(\{E S \wedge e c<e t \wedge i<M+1 \wedge x(e c)>0\}\) Evenyes: et \(:=e c\{E S\}\)
 else \(\{E S \wedge e c<e t \wedge x(e c) \leq 0\}\) Evenno: ec \(:=e c+2\{E S\}\)
 fi
 \(\{E S\}\)
od
 \(\{E S \wedge e c \geq \min (o t, e t)\}\)
\(\|\)
\[
\{O S\}
\]
Oddsearch: while \(o c<\min (o t\), et \()\) do
\[
\{O S \wedge o c<o t \wedge o c<M+1\}
\]
Oddtest: if \(x(o c)>0\)
then \(\{O S \wedge o c<o t \wedge o c<M+1 \wedge x(o c)>0\}\) Oddyes: ot \(:=o c\{O S\}\) else \(\{O S \wedge o c<o t \wedge x(o c) \leq 0\} O d d n o: o c:=o c+2\{O S\}\)
```


## fi

```
\(\{O S\}\)
od
\(\{O S \wedge o c \geq \min (o t, e t)\}\)
coend
\(\{O S \wedge E S \wedge e c \geq \min (o t, e t) \wedge o c \geq \min (o t, e t)\}\)
\(t:=\min (o t, e t)\)
\(\{t \leq M+1 \wedge(t \leq M \Rightarrow x(t)>0) \wedge \forall i \cdot 0<n<t \Rightarrow x(n) \leq 0\}\)
end
Where:
\(E S=\left\{\begin{array}{l}\text { even }(e c) \wedge \\ \text { et } \leq M+1 \wedge \\ (\text { et } \leq M \Rightarrow x(e t)>0) \wedge \\ \forall n \cdot \operatorname{even}(n) \wedge 0<n<e c \Rightarrow x(n) \leq 0\end{array}\right\}\)
\(O S=\left\{\begin{array}{l}\text { odd }(\text { oc }) \wedge \\ \text { ot } \leq M+1 \wedge \\ (\text { ot } \leq M \Rightarrow x(\text { ot })>0) \wedge \\ \forall n \cdot \operatorname{odd}(n) \wedge 0<n<o c \Rightarrow x(n) \leq 0\end{array}\right\}\)
```

Breakout 5.2: Partial correctness proof of Findpos from [Owi75]

## "Owicki-Gries" approach

- Hoare-style proofs of separate threads
- could have been "development"
- but do need all assertions for ...
- but: the "interference freedom" PO is post-facto
- if fails: start from beginning!
- atomicity


## Findpos in Ashcroft's approach

- similar proof load
- I actually re-used Owicki's predicate definitions
- (full proof available in forthcoming book)


## Program

Findpos: ec $:=2 ;$ oc:=1; et:=ot:=M+1;
Search: fork go to(Evensearch, Oddsearch);
Evensearch: if $e c<\min (o t, e t)$ then go to Eventest else go to $J$;
Eventest: if $x(e c)>0$ then go to Evenyes else go to Evenno
Evenyes: et $:=e c$; go to Evensearch,
Evenno: ec $:=e c+2$; go to Evensearch;
Oddsearch: if oc $<\min (o t$, et $)$ then go to Oddtest else go to $J$;
Oddtest: if $x(o c)>0$ then go to Oddyes else go to Oddno;
Oddyes: ot:=oc; go to Oddsearch;
Oddno: oc:=oc+2; go to Oddsearch;
$J$ : join(Evensearch, Oddsearch);
$t:=\min (o t, e t)$;
$F$ : HALT
The step to label Search is sequential so the control state $c$ is a unit set and the state assertion is:

$$
c=\{\text { Search }\}: e c=2 \wedge o c=1 \wedge e t=o t=M+1
$$

Using the same definitions as in Breakout 5.2:

$$
\begin{aligned}
& E S=\left\{\begin{array}{l}
\text { even }(i) \wedge \\
\text { et } \leq M+1 \wedge \\
(\text { et } \leq M \Rightarrow x(e t)>0) \wedge \\
\forall n \cdot \text { even }(n) \wedge 0<n<e c \Rightarrow x(n) \leq 0
\end{array}\right\} \\
& O S=\left\{\begin{array}{l}
\text { odd }(o c) \wedge \\
\text { ot } \leq M+1 \wedge \\
(\text { ot } \leq M \Rightarrow x(o t)>0) \wedge \\
\forall n \cdot \text { odd }(n) \wedge 0<n<o c \Rightarrow x(n) \leq 0
\end{array}\right\}
\end{aligned}
$$

It is sufficient to consider groups of control states as follows (with their attached state assertions):

Evensearch $\in c: E S$
Eventest $\in c: E S \wedge e c<e t \wedge e c<M+1$
Evenyes $\in c: E S \wedge e c<e t \wedge e c<M+1 \wedge x(e c)>0$
Evenno $\in c: E S \wedge e c<e t \wedge x(e c) \leq 0$

Each of these steps follows by standard Floyd-like reasoning because there is no damaging interference. (Again the reasoning for the other thread is completely symmetric.)

The only difficult step is proving that both steps from Evensearch and Oddsearch to $J$ are orrect.
$c=\{J\}: E S \wedge O S \wedge e c \geq \min (o t, e t) \wedge o c \geq \min (o t, e t)$
since $c=\{$ Evensearch, Oddyes $\}$ indicates that ot can be changed after the test. To con clude that the negation of that test is still true at $J$, it is necessary to note that:

$$
e c \geq \min (o t, e t) \wedge o t^{\prime}=o c \wedge o c<o t \Rightarrow e c \geq \min \left(o t^{\prime}, e t\right)
$$

The final step from $J$ to $F$ is again sequential reasoning (singleton control states):

## Findpos in Ashcroft/Manna??

- they don't actually give a mapping algorithm
- they give a fairly general example
- (concurrent to non-deterministic programs)
- the merge is too large!
- because loops+conditionals in both branches



## Hey insionts

- concurrency can be replaced by non-determinacy [AshcroftManna]
- but identification of "atomic steps" must be honest
- keeping track of all potential next steps can avoid expansion [Ashcroft]
- points to separation of program and its justification
- "interference freedom" localises the pain [Owicki]
- "bottom-up" uses proof to replace testing
- (IMHO) formal methods pay off in design


## "Atomicity" = a problem for all

- $x:=x+1$
- if $x=x$ then ... else ...
- "Reynolds' rule" doesn't solve the problem;
- $t:=x ; t:=t+1 ; x:=t$
- it just exposes it
- (nor did John own it!)
- BTW there are neater versions of Findpos


## Enhanced time line

Floyd [Flo67]
Manna ..... 68 ..... 69
Hoare ..... 69AM
71 ..... 7571
Ashcroft ..... 73 ..... 75
Owicki ..... 75
Rely/Guar ..... 81CSL
on apparent linearity:
I've focussed on 1 strand

+ fewer researchers in the 70s

