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In this talk I will discuss the impact of Turing’s
formalism independent (Gödel’s phrase)
conception of computability on Gödel’s handling
of semantic concepts in the 1930s, through to
Gödel’s 1946 Princeton Bicentennial Lecture.
Gödel viewed Turing’s analysis of computability as
paradigmatic, and the impact on his thinking, in
1946 and subsequently, was substantial:
mathematically, Gödel’s “transfer” of the Turing
analysis of computability to the case of provability
led to the first formulation of what has come to be
known as Gödel’s program for large cardinals. In
the case of definability this transfer led to the
fruitful concept of ordinal and hereditary ordinal
definability in set theory. 2



Philosophically: goal is decidability

Much of Gödel’s philosophical work was
directed toward the formulation of a view from
which the unrestricted application of the Law
of Excluded Middle to the entire cumulative
hierarchy of sets could be justified.
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This means eliminating independence,  which 
always brings undecidability with it. 
In the light of the Incompleteness Theorems this 
means in turn, formalism independence. 

(Logical autonomy.)
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The claim here is that Gödel’s appropriation of
the Turing analysis lent power and plausibility
to his search for a logically autonomous
perspective, allowing an overview of logical
frameworks, while not being entangled in any
particular one of them—for that is what
absolute decidability entails.
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I will claim that the difficulties with
establishing—in an absolute sense—the
legitimacy of one’s computational model,
and the resolution thereof, provided by
Turing, led Gödel to the position: semantic
concepts can not be eliminated from our
meta-mathematical discourse.
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I. The Incompleteness Theorems 
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Gödel’s First version of the First 
Incompleteness Theorem…

…is heavily semantic: provability is definable in 
(say) Peano Arithmetic; truth is not definable in 
Peano Arithmetic, on pain of paradox.

Gödel does not publish this proof, nor does he 
publish the undefinability of truth theorem.
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The 2nd, published version…
…is finitary, or “constructive”: the general notion of 
truth, or the concept of truth in the natural numbers, 
appears nowhere in the proof.

So Gödel goes to great lengths to eliminate semantic 
notions from the proof.

However: Gödel must (strongly) represent the 
primitive recursive functions, i.e. among presenting 
things like the Fixed Point Theorem and 
arithmetization, he must prove: 
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Strong representability of the primitive 
recursive functions
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Gödel’s immediate commentary 

Gödel’s first comment on his proof is that the 
theorem is constructive, being that “all 
existential statements occurring in the proof are 
based on Theorem V.”
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Nowhere in the proof of Theorem V is the full structure of the 
natural numbers invoked. Strong representability is proved 
“piecewise,” that is, for a given function defined on a finite 
segment of the natural numbers. The proof is thus 
constructively, which at the time was usually employed by 
Gödel as a synonym for “finitistically,” acceptable. 

Gödel in later years was interested in defining the limit of 
finitary reasoning, which for him meant finding a specific 
proof-theoretic ordinal. A proposal considered in the 
substantial literature on the limits of finitary reasoning is that 
primitive recursive arithmetic (PRA) should define that limit.
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Semantic content?
In the interest of analysing the semantic as well as 
the finitary content of the First Incompleteness 
Theorem, consider the proof of Theorem V in the 
case of, e.g. the exponential function.

I suggest that Gödel is (arguably) appealing to 
semantic content in the form of the primitive 
recursive scheme defining the exponentiation 
function in natural language, for the construction of 
the formal analogue of the exponentiation function. 
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Namely…
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Footnote 41: “When this proof is carried out in 
detail, [the formal object JK], of course, is not 
defined indirectly with the help of its meaning 
but in terms of its purely formal structure.”
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Is “decidability in a theory” a purely syntactic 
condition? It is generally thought to be so, on the 
basis of some mutual understanding of the term 
“syntactic.” Gödel used the term to mean 
“devoid of content”: 
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“The essence of this view is that there is no such 
thing as a mathematical fact, that the truth of 
propositions which we believe express mathematical 
facts only means that (due to the rather complicated 
rules which define the meaning of propositions, that 
is, which determine under what circumstances a 
proposition is true) an idle running of language 
occurs in these propositions, in that the said rules 
make them true no matter what the facts are. Such 
propositions can rightly be called void of content.”
(Gibbs lecture in the Collected Works vol 3, p. 319.) 
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Beklemishev observes on Theorem V:

“Gödel’s notion of decidability in a theory . . . does 
not appeal to the ‘contentual’ meaning (inhaltliche
Deutung) of the formulae of the system P. However, 
one can still see that this notion implicitly appeals to 
a semantic interpretation of primitive recursive 
schemes, because the formula φR is in fact 
constructed from a primitive recursive scheme 
defining R…”
(“Gödel’s incompleteness theorems and the limits 
of their applicability. I.” Uspekhi Mat. Nauk, 
65(5(395)):61–106, 2010.) 
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In other words, the definition of the formula φR, 
whether in the type-theoretic framework and/or 
relying on the β-function, draws on the actual 
primitive recursive definition of the relation R, 
or more precisely, on its meaning.
In that sense this part of the proof may be said to 
have and/or express an implicit semantic content. 
Of course appealing to semantic content in 
setting up a formal system does not mean that 
the resulting formal language is to be regarded as 
contentual. 
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Build provenance into the system?

The only way this idea can be accommodated in 
logical practice (to my knowledge) is via the 
mechanism of an interpretation, that is, the 
assignment of a (formal) semantics to the 
formalism in question, and in this way “the 
formal” is merged with semantic content.
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Otherwise there appears to be no notion of 
syntax on the market, that could accommodate 
an appeal to the meanings of the pre-theoretic 
object in question, in the formulation of the 
syntax—as seems vaguely to happen in strong 
representability. 
The formal analogue of the primitive recursive 
function, the entire formalism for that matter, is a 
“genealogical isolate,” in the terminology of race 
theory—stripped of origins, stripped of meaning.
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But see…

Erich Grädel: “Semiring Semantics for Logical 
Statements with Applications to the Strategy 
Analysis of Games”
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Gödel’s later view of semantic 
concepts

“While a formal system consists only of symbols 
and mechanical rules relating to them, the 
meaning which we attach to the symbols is a 
leading principle in the setting up of the system.”

(1934 Princeton lectures) 
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Godel to Wang, 1967

“How indeed could one think of expressing 
metamathematics in the mathematical systems 
themselves, if the latter are considered to consist 
of meaningless symbols which acquire some 
substitute of meaning only through 
metamathematics?” 
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In Draft V of Gödel’s paper “Is Mathematics a Syntax of 
Language” (1951-9) the Beklemishev point is drawn upon 
again and again: in order to devise the system in question, 
never mind to ultimately to ascertain its consistency, one 
needs an available content to begin with, a starting point. 

Conventionalism, which Gödel sees as a variant of the 
syntactic point of view, is here argued against, in 
particular Gödel argues that conventions regarding 
symbolic manipulation express or presuppose factual 
knowledge about symbols, knowledge “which must be 
known to us already in an empirical attire (i.e. mixed with 
synthetic facts).” One can adopt the view that conventions 
are devoid of content in an absolute sense, but: 
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“If one speaks of conventions and their voidness 
of content in an absolute sense, this can only 
mean that they are conventions relative to that 
body of knowledge which is indispensable for 
making any linguistic conventions at all.” 
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“These are “unequivocally ascertainable [i.e. true 
JK] relations between the primitive terms of 
combinatorics, such as “pair,” “equality,” 
“iteration,” and they can least of all be 
eliminated by basing the use of those terms on 
conventions.” 
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Consistency

However one views the setting up of the formal 
system, there is, on the opposite side of the 
spectrum, the issue of the consistency of the 
entire system, which cannot be derived 
internally, as a consequence of Gödel’s Second 
Incompleteness Theorem. 
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“But now it turns out that for proving the 
consistency of mathematics an intuition of the same 
power is needed as for deducing the truth of the 
mathematical axioms, at least in some 
interpretation. In particular the abstract 
mathematical concepts, such as “infinite set,” 
“function,” etc., cannot be proved consistent without 
again using abstract concepts, i.e., such as are not 
merely ascertainable properties or relations of finite 
combinations of symbols. So, while it was the 
primary purpose of the syntactical conception to 
justify the use of these problematic concepts by 
interpreting them syntactically, it turns out that quite 
on the contrary, abstract concepts are necessary in 
order to justify the syntactical rules (as admissible 
or consistent). . .” 
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“…the fact is that, in whatever manner syntactical 
rules are formulated, the power and usefulness of 
the mathematics resulting is proportional to the 
power of the mathematical intuition necessary for 
their proof of admissibility. This phenomenon might 
be called “the non-eliminability of the content of 
mathematics by the syntactical interpretation.”

(Gibbs lecture, 1953)
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II. The Entscheidungsproblem
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First a little history

Gödel employed the class of recursive functions
in his landmark 1931 paper.

Recursion was already known: Dedekind (1888,
thm 126); Ackermann (1928) separated
recursion from primitive recursion, Rosza
Péter simplified Ackermann’s presentation
(1932), coined the term “primitive recursive”.
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1932: Church introduces the λ-calculus 

Church developed the λ-calculus together with
Kleene, a type-free and indeed, in Gandy’s
words, “logic free” model of effective
computability, based on the primitives
“function” and “iteration.”
The phrase “logic free” is applicable only from
the point of view of the later 1936 presentation
of it, as Church’s original presentation of the λ-
calculus in his 1932* embeds those primitives in
a “deductive formalism,” in Hilbert and
Bernays’s terminology. 33



Computability in a logic

The attitude in Princeton initially (in the early
1930s) was that computability should be
understood in terms of calculability in a logic.

(I rely here mainly on the accounts given in Gandy’s
1988 “The confluence of ideas in 1936” and
Sieg’s 1997 “Step by Recursive Step: Church's
Analysis of Effective Calculability”.)
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“And let us call a function F of one positive
integer calculable within the logic if there
exists an expression f in the logic such that f(μ)
= ν is a theorem when and only when
F(m) = n is true, μ and ν being the expressions
which stand for the positive integers m and n.”
(Church, 1936)

35

“Computable in a logic” means…



Circularity?

Such functions F are recursive, according to
Church, if it is assumed that the logic's
theorem predicate is recursively enumerable.
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Problem

Church’s original presentation of the λ-
calculus was found by his students Kleene and
Rosser to be inconsistent.

Kleene, Rosser, “The inconsistency of certain
formal logics”, Bulletin of the American
Mathematical Society, vol. 41 (1935)
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“Not exactly what one dreams of having one’s
graduate students accomplish for one.”

---Martin Davis
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Kleene: “History of computability 
in the period 1931-1933” 

“When it began to appear that the full system is
inconsistent, Church spoke out on the
significance of λ-definability, abstracted from
any formal system of logic, as a notion of
number theory.”
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Church’s Thesis: 1933-4

Church’s Thesis begins with Church’s
verbal suggestions in 1933-4, to identify
the λ-definable functions with the
effectively computable (i.e. human
intuitively computable) functions.
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Adequacy
By which criteria do we shape, commit ourselves
to, or otherwise assess standards of adequacy?
This is the problem of faithfulness; the problem
of what is lost whenever an intuitively given
mathematical concept is made exact, or, beyond
that, formalized; the problem, in words, of the
adequacy of our mathematical definitions. It
appears to be a philosophical problem rather than
a mathematical one, as the idea of “fit” is subject
to mathematical proof only very indirectly, if at
all.
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One coping mechanism: “thesis” 
language

Church-Turing Thesis: equates the class of intuitively computable 
number-theoretic functions with the class of functions computable by a 
Turing Machine. (In its present formulation.)

Weierstrass thesis: the ε − δ definition of continuity correctly and 
uniquely expresses the informal concept.

Dedekind’s thesis: the collection of Dedekind cuts gives the correct 
definition of the concept “line without gaps”. (Alternatively, that 
Dedekind gave the correct definition of a natural number.)

Area thesis: the Riemann integral correctly captures the idea of the area 
bounded by a curve. 

Hilbert’s Thesis: “the steps of any mathematical argument can be given 
in a first order language (with identity).” (Kripke) 42



“There are theses everywhere.”

Shapiro, “The open texture of computability.” In 
Computability—Turing, Gödel, Church, and 
beyond.
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Evidence for Church’s Thesis 

Any function that appeared to be effectively
computable, was λ-definable, and conversely.

(Much labor went into showing this!)
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Gödel unconvinced…

Gödel: “Thoroughly unsatisfactory.”

Church reports the remark in a letter to Kleene
dated November 29, 1935. Unsatisfactory is
the proposal that the intuitive notion of
computability is adequately captured by the
computational models discovered to date.
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Another line of thought: Herbrand-
Gödel Recursion

By 1934, compelled to “make the incompleteness
results less dependent on particular formalisms,”
Gödel introduced in his Princeton lectures of spring
1934, the general recursive or Herbrand-Gödel
recursive functions, as they came to be known,
defining (along the way) the notion of “formal
system” as consisting of “symbols and mechanical
rules relating to them.” Inference and axiomhood
were to be witnessed by a finite (primitive
recursive) procedure, also the syntax.
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Formal system: symbols and 
mechanical rules

“We require that the rules of inference, and the 
definitions of meaningful formulas and
axioms, be constructive; that is, for each rule 
of inference there shall be a finite procedure 
for determining whether a given formula B is 
an immediate consequence (by that rule) of 
given formulas A1,...An, and there shall be a 
finite procedure for determining whether a 
given formula A is a meaningful formula or an 
axiom. ”
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HG calculus continued

The calculus admits forms of recursions that go
beyond primitive recursion. Roughly speaking,
while primitive recursion is based on the
successor function, in the Herbrand-Gödel
equational calculus one is allowed to sub-
stitute other recursive functions in the
equations, as long as this defines a unique
function. (For example f(n) = f(n+1) does not
define a unique function.)
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The (in)adequacy of the HG equational 
calculus

Gödel, letter to Martin Davis February 15, 1965:

“...I was, at the time of these lectures, not at all
convinced that my concept of recursion
comprises all possible recursions.”

(Indeed, there is little reason to suppose this.)
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CT crystallizes in 1935

In Church’s lecture on what came to be known
as “Church’s Thesis” to the American
Mathematical Society in 1935, Church uses the
Herbrand-Gödel equational calculus as a
model of effective computation, i.e.
recursiveness in the “new sense,” rather than
the λ-calculus.
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This was preceded by a complex development
in which the functions defined in the HG-
equational calculus were shown to be the same
as the λ-definable functions.
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Two approaches in 1936

Church presented two approaches to
computability in the AMS lectures and in his
subsequent [1936], based on the lectures:
Firstly algorithmic (what Gandy had called
“logic-free”), based on what is now known as
the untyped λ-calculus, i.e. the evaluation of
the value f(m) of a function by the step-by-step
application of an algorithm—and secondly
logical, based on the idea of calculability in a
logic.
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Hilbert-Bernays’ 1939 Grundlagen der 
Mathematik II 

HB present a logical calculus rather than a
system of the type of Gödel’s [1934]. The
essential requirement here is that the proof
predicate of the logic is primitive recursive.

This effects a precise gain: one reduces
effectivity now to primitive recursion.
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Problem with the logical approach

If effectivity is explained via a logic which is
supposed to be given effectively, one must
then introduce a new logic, by means of which
the effectivity of the initial logic is to be
analyzed.

It is natural to assume of the new logic, that it
also should be given effectively. But then one
must introduce a third logic by means of which
this effectivity is to be analyzed. And so
forth…
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Shift in perspective had begun to set in 
in 1934

Gandy: “. . . in 1934 the interest of the group shifted from 
systems of logic to the λ-calculus and certain mild 
extensions of it…”

Indeed, the Herbrand-equational calculus is not a system
of logic per se. Nor is Kleene’s 1936 system based on
the concept of μ-recursion, a logical calculus; and nor is
Post’s model of computability presented (also) in 1936
(based on work he had done in the 1920s).

All of these are conceptions of computability given, 
primarily, mathematically—but there was no reason 
whatsoever to believe in their adequacy. 
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Confluence not enough

They had confluence, i.e. they knew that their
various systems were equivalent in the sense
of giving the same class of functions. But they
lacked a grounding example.
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Turing 1936 

Rather than calculability in a logic, Turing 
analyzes effectivity in terms of an informal, 
fully sharpened, mathematical notion: the 
concept of a Turing machine.

57



Turing also solves the 
Entscheidungsproblem!

First proves the unsolvability of the halting problem, 
which is: given any Turing Machine, can one always 
decide if it halts or not, on a given input?

Then shows that provability in FOL is decidable iff the 
halting problem is solvable.

Church had solved the Entscheidingsproblem shortly 
before…
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Turing’s Machines

Turing’s machine model of computability consists
of a tape scanned by a reader, together with a set 
of simple instructions in the form of quintples.

The analysis consisted of two elements: a 
conceptual analysis of human effective 
computation, together with a mathematical 
precisification of it consisting of rules given by 
the simple instructions “erase,” “print 1,” “move 
left,” and “move right.” 
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Reactions

“Turing’s computability is intrinsically
persuasive but λ-definability is not intrinsically
persuasive and general recursiveness scarcely
so (its author Gödel being at the time not at all
persuaded).”

Kleene, 1981, “The theory of recursive
functions, approaching its centennial.” Bull.
Amer. Math. Soc. (N.S.), 5(1).

.
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Gödel to Wang

“The resulting definition of the concept of
mechanical by the sharp concept of
“performable by a Turing machine” is both
correct and unique...Moreover it is absolutely
impossible that anybody who understands the
question and knows Turing’s definition should
decide for a different concept.”
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Gödel to Wang continued

“The sharp concept is there all along, only we
did not perceive it clearly at first. This is
similar to our perception of an animal far away
and then nearby. We had not perceived the
sharp concept of mechanical procedure sharply
before Turing, who brought us to the right
perspective. ”
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Grounding

For the logicians of the time, then, the Turing
Machine was not just another in the list of
acceptable notions of computability—it was
the grounding of all of them.
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Gandy: Turing’s isolation from the 
logical milieu of Princeton was the key 

“It is almost true to say that Turing succeeded in
his analysis because he was not familiar with
the work of others. . . The bare hands, do-it-
yourself approach does lead to clumsiness and
error. But the way in which he uses concrete
objects such as exercise book and printer’s ink
to illustrate and control the argument is typical
of his insight and originality. Let us praise the
uncluttered mind. ” 65



Generality of the Incompleteness 
Theorems

A precise notion of formal system was needed for
settling the question, taken up by Gödel himself in
his 1931 paper on Incompleteness, whether those
theorems are completely general, that is, whether
they apply to any formal system containing
arithmetic, and not just Principia and systems
related to it. Gödel was careful to say at the end of
his 1931 paper that this had not been shown. The
issue lingered for some time after the
Incompleteness Theorems had been published.
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Turing analysis resolves the issue in 
Gödel’s view

“In consequence of later advances, in particular of the fact
that, due to A. M. Turing’s work, a precise and
unquestionably adequate definition of the general
concept of formal system can now be given, the
existence of undecidable arithmetical propositions and
the non-demonstrability of the consistency of a system
in the same system can now be proved rigorously for
every consistent formal system containing a certain
amount of finitary number theory.” Gödel, 1965,
Postscriptum to his 1934 lectures.
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. . . Turing’s work gives an analysis of the
concept of “mechanical procedure” (alias
algorithm or computation procedure or “finite
combinatorial procedure”). This concept is
shown to be equivalent with that of a “Turing
machine.” A formal system can simply be
defined to be any mechanical procedure for
producing formulas, called provable formulas.
For any formal system in this sense there exists
one in the [usual] sense that has the same
provable formulas (and likewise vice versa). . .
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“That my [incompleteness] results were valid for
all possible formal systems began to be
plausible for me (that is since 1935) only
because of the Remark printed on p. 83 of ‘The
Undecidable’ . . . But I was completely
convinced only by Turing’s paper. ”

Gödel, letter to Kreisel (printed in Odifreddi.)
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Footnote to 1934 lectures

“In my opinion the term “formal system” or 
“formalism” should never be used for anything 
but this notion [i.e. a mechanical procedure in 
the sense of the Turing Machine JK].”, Collected 
Works. I: Publications 1929–1936, p. 195
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“All the work described in Sections 14.3-14.977 [work of
Church etc JK] was based on the mathematical and
logical (and not on the computational) experience of the
time. What Turing did, by his analysis of the processes
and limitations of calculations of human beings, was to
clear away, with a single stroke of his broom, this
dependence on contemporary experience, and produce
a characterization which—within clearly perceived
limits—will stand for all time. ”
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Now to the Entscheidingsproblem, and 
why Gödel doesn’t offer a solution to it

Formulated in its standard form in Hilbert and 
Ackermann’s 1928, it asks whether there is an algorithm 
for deciding validity for first order logic, i.e. if there is an 
algorithm which decides in a yes or no manner for any 
first order statement P, whether it is valid or not. 
Gödel’s Completeness Theorem equates first order 
validity with the existence of a finite proof, so the 
Entscheidungsproblem is equivalent to the question 
whether, for any recursively axiomatized first order 
theory, there is an algorithm for deciding whether a first 
order statement in the language of the theory follows from 
the axioms. 
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Put another way…

Given that the proof predicate for e.g. first order 
Peano Arithmetic is Σ1 (or recursively 
enumerable, i.e. r.e.), the Entscheidungsproblem
asks whether the provability predicate for e.g. 
first order Peano is not only r.e. but recursive. 
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Herbrand, 1929

The decision problem is “…the most important
of those, which exist at present in
mathematics.”
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The unsolvability of the Decision Problem 
(Entscheidungsproblem) was established independently by 
Church and Turing in 1936, using conceptually distinct 
methods. 

Church’s Thesis is used here: the notion of “algorithm” at 
issue in the Entscheidungsproblem is adequately 
represented by the mathematical notion of “recursive.” 
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Many logicians have remarked on the close 
relationship between the Entscheidungsproblem
and incompleteness, e.g. R. Gandy. “Thus
Gödel’s result,” as Gandy would write in his 
brilliant survey paper “The confluence of ideas 
in 1936” , “meant that it was almost 
inconceivable that the Entscheidungsproblem
should be decidable: a solution could, so to 
speak, only work by magic.” 
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On magic

If the Entscheindingsproblem were decidable, 
then we would know that the algorithm always 
gives an answer, however we could not prove
that it always gives an answer.

This seems odd.
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In Kripke’s view Gödel’s 1931 actually solves the 
Entscheidungsproblem! 

In his view, Gandy’s remark (on “magic”) is “much too weak,” 
as the unsolvability of the Entscheidungsproblem is a corollary 
of Gödel’s 1931 paper, in particular of Theorem IX: 

“Gödel’s Theorem IX clearly directly implies Turing’s result 
that the Entscheidungsproblem is not decidable on one of his 
machines, since we can simply add an axiomatization of the 
operation of the machine to his basic system.”*

* “The Church-Turing “Thesis” as a special corollary of 
Gödel’s completeness theorem." In Computability: Gödel, 
Church, and Beyond.
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The argument, roughly, is as follows. 

First adopt Kripke’s (in his terminology) a 
“logical” view of computation, namely that 
computation should be regarded as a special 
form of mathematical argument: 
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“My main point is this: computation is a
special form of mathematical argument. One is
given a set of instructions, and the steps in the
computation are supposed to follow—follow
deductively— from the instructions as given.
It is in this sense…that I am regarding
computation as a special form of deduction,
that I am saying I am advocating a logical
orientation to the problem.”
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Hilbert’s Thesis
The second ingredient Kripke relies on for his claim that 
the negative solution of the Entscheidungsproblem is a 
corollary of Gödel’s Theorem IX, is what he calls 
“Hilbert’s Thesis,” namely the idea that “the steps of any 
mathematical argument can be given in a language based 
on first-order logic (with identity).” 
Kripke will use Hilbert’s Thesis together with Gödel’s 
Completeness Theorem to infer that any valid 
computation, if viewed as a valid deduction, is provable in 
any of the standard first-order formal systems. 
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Gödel’s Theorem IX of 1931

“For any of the formal systems mentioned in 
theorem VI,” there are undecidable problems of 
a first order form, i.e. first order formulas for 
which neither validity not the existence of a 
counterexample is provable.
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The proof of the undecidability of the 
Entscheidingsproblem from theorem IX:
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A repeat of the hesitation to publish the 
semantic version of the f.i.t. in 1930?

The above argument requires acceptance of 
Church’s Thesis.

It also requires the semantic notion of truth in the 
standard model. (In order to prove Theorem X, 
from which theorem IX follows.)
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Reasons…

Does this speak to Gödel’s deference to the anti-
metaphysical atmosphere of the times? Or does it 
speak to a deeper anti-truth stance, however 
temporary?

Assumption: Gödel knew this argument!
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A disagreement with Kripke

“...why didn’t Gödel ...regard Theorem IX as 
such a proof? One problem in the argument I 
have given that Theorem IX is such a proof is its 
free use of the notion of truth... However, it 
seems very unlikely that Gödel, at least, would 
have regarded that as a questionable part of 
the argument. What seems most likely lacking 
is an appropriate analog of Church’s thesis.” 
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III. Gödel’s 1946 Lecture, and the appearance of 
truth as a primitive notion
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“Tarski has sketched in his lecture the great
importance (and I think justly) of the concept
of general recursiveness (or Turing
computability). It seems to me that this
importance is largely due to the fact that with
this concept one has succeeded in giving an
absolute definition of an interesting
epistemological notion, i.e. one not depending
on the formalism chosen.”
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“In all other cases treated previously, such as
demonstrability or definability, one has been
able to define them only relative to a given
language, and for each individual language it is
clear that the one thus obtained is not the one
looked for.”

E.g. being definable in set theory is not
definable. “Take the least undefinable
ordinal…”
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“This, I think, should encourage one to expect
the same thing to be possible also in other
cases (such as demonstrability or definability).
It is true that for these other cases there exist
certain negative results, such as the
incompleteness of every formalism . . . But
close examination shows that these results do
not make a definition of the absolute notions
concerned impossible under all circumstances,
but only exclude certain ways of defining
them, or at least, that certain very closely
related concepts may be definable in an
absolute sense. ”
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What are we aiming at?

Gödel: Intuitive concept of definability to be
made precise: “Comprehensibility by our
mind.”
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Provability
“Let us consider, e.g., the concept of demonstrability. It is

well known that, in whichever way you make it precise
by means of a formalism, the contemplation of this very
formalism gives rise to new axioms which are exactly
as evident and justified as those with which you started,
and that this process of extension can be extended into
the transfinite. So there cannot exist any formalism
which would embrace all these steps; but this does not
exclude that all these steps . . . could be described and
collected in some non-constructive way. In set theory,
e.g., the successive extensions can be most
conveniently represented by stronger and stronger
axioms of infinity.”
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Truth as a primitive notion

“…It is not impossible that for such a concept of
demonstrability some completeness theorem
would hold which would say that every
proposition expressible in set theory is
decidable from the present [ZFC] axioms plus
some true assertion about the largeness of the
universe of all sets.”
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In brief…

Some suitable hierarchy of large cardinal
assumptions should replace the hierarchy of
formal systems generated by, e.g., the addition
of consistency statements to set theory, i.e.,
passing from ZFC to ZFC+Con(ZFC) and then
iterating this; or the addition of a satisfaction
predicate for the language of set theory, then
considering set theory in the extended
language, and iterating this.
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First proposal for definability: 
Constructibility

• Constructible sets (L):
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L0 = ;
L↵+1 = Def(L↵)
L⌫ =

S
↵<⌫ L↵ for limit ⌫



Gödel’s two notions of definability
• Two canonical inner models:
– Constructible sets (L)

• Model of ZFC
• Model of GCH
• Definable, but in analogy with the Kleene T-predicate this 

does not provide a mechanism to transcend L
– Hereditarily ordinal definable sets (HOD)

• Model of ZFC
• CH? – independent 
• Definable, but in analogy with the Kleene T-predicate this 

does not provide a mechanism to transcend HOD
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3 “epistemological” notions: computability,
provability, definability.

Each come with their own paradoxes.
Gödel wants to adapt the Turing analysis*

of computability to the cases of
provability and definability.

*find a formalism independent
characterisation of the concept
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Back to the future

Gödel’s question about generalizing the Turing
analysis to the cases of provability and
definability in his 1946 Lecture plunges us into
a set of issues that are very similar to those
faced by the logicians of the 1930s, prior to
Turing.
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Truth

• Is generally taken as a primitive notion in 
Gödel’s philosophical writings from 1936 (i.e.
post-Turing) onwards.

• Axioms force themselves on us as being true 
etc…
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IV. The Machine metaphor
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1934 lecture

“When I first published my paper about 
undecidable propositions the result could not be 
pronounced in this generality, because for the 
notions of mechanical procedure and of formal 
system no mathematically satisfactory definition 
had been given at the time. This gap has since 
been filled by Herbrand, Church and Turing. The 
essential point is to define what a procedure is. 
Then the notion of formal system follows 
easily…”
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What was so compelling about the 
machine metaphor?

The “automated condition” is often presented 
today in a negative light, as a condition of fatal 
passivity.

Hannah Arendt warns in The Human Condition
that advancements in automation enabled by the 
industrial revolution and invention the steam 
engine, could result “in the deadliest, most sterile 
passivity history has ever known.” 
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But this is new:
Descartes Animals as machines

L’homme machine, Julien Offray de la Mettrie, 1748: the soul is to be “clearly an 
enlightened machine.”

The Human Motor, Anson Rabinbach, 1900: the “human motor” as a key metaphor of 
the industrial era

Manifesto  del Futurismo, 1909, Marinetti: glorification of the machine. “A roaring 
motor car which seems to run on machine-gun fire, is more beautiful than the Victory 
of Samothrace.”

Marinetti to Severini: “try to live the war [WWI JK] pictorially, studying it in all its 
marvelous mechanical forms.”

Letter, Raymond Duchamp-Villon, 1913: “The power of the machine asserts itself and 
we can scarcely conceive living beings anymore without it.” 

Reciprocity between metaphors: body-as-machine, machine-as-body.
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Unique Forms of Continuity in Space 
Boccioni, 1913 

105



Question

Did the idealization of the machine contribute to 
the acceptance of the Turing Machine as 
adequate for human effective computability?
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Thank you!
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IV. Implementation

Study the degree to which canonical 
mathematical structures are entangled with 
(sensitive to) their underlying logic (or 
formalism), or alternatively persistent under 
permutation of these, i.e. formalism free. 
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Recall…

By a formalism, or a logic, we mean a 
combination of a list of symbols, commonly 
called a signature, or vocabulary; rules for 
building terms and formulas, a list of axioms,
rules of proof, and finally a definition of the 
associated semantics. 
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Definition
• With this concept of formalism we associate

formalism freeness with the suppression of any or 
all of the above aspects of a logic, except 
semantics.

• Of course vocabulary in the informal, natural 
language sense, detached from any formalism, is 
always a feature of the practice and in that sense 
is not suppressed. The difference between the use 
of names in the mathematician’s natural language 
and the vocabulary of a formal language. 

111



Tarski

A class of structures in a finite relational
language is universally (Pi1) axiomatizable if
and only if it is closed under isomorphism,
substructure and if for every finite substructure
B of a structure A, B ∈ K then A ∈ K.
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Choice of primitives 

“The mutual interpretability between classical
geometries and fields theories can only be
treated as a functor preserving model
completeness by a very careful choice of the
primitives for the geometry (particularly) for
the order case.”

Observation in Manders 1984, “Interpretations
and the model theory of the classical
geometries.”
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Joint work with M. Magidor and J. Väänänen
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Recall Constructibility

• Constructible sets (L):
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L0 = ;
L↵+1 = Def(L↵)
L⌫ =

S
↵<⌫ L↵ for limit ⌫



Gödel’s alternate definition of L 
making no reference to definability
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C(L*)

• L* any logic. We define C(L*):

• C(L*) = the union of all L´α
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• Myhill-Scott result: Hereditarily ordinal 
definable sets (HOD) can be seen as the 
constructible hierarchy based on second order 
logic (in place of first order logic):
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Two extremes

If L* is first order logic, we get L.
If L* is second order logic, we get HOD. 
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If V=L

• If V=L, then V=HOD=Chang’s model=L.
• If there are uncountably many measurable 

cardinals then AC fails in the Chang model. 
(Kunen.) 
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Outcomes:

• For a variety of logics C(L*)=L
– Gödel’s L is very robust, not limited to first order 

logic
• For a variety of logics C(L*)=HOD
– Gödel’s HOD is robust, not limited to second order 

logic
• For some logics C(L*) is a potentially 

interesting new inner model.
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Robustness of L

• Q1xφ(x) ó{a : φ(a)} is uncountable
• C(L(Q1)) = L.
• In fact: C(L(Qα)) = L, where 
– Qαxφ(x) ó |{a : φ(a)}| ≥ אα

• Other logics, e.g. 
weak second order logic, ``absolute” logics, 

etc.
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Robustness of L (contd.)

• A logic L* is absolute if  ``φ∈L*” is Σ1 in φ
and ``M⊨φ” is Δ1 in M and φ in ZFC.  
– First order logic
–Weak second order logic
– L(Q0): ``there exists infinitely many
– Finitary fragment of Lω1ω, L∞ω: infinitary logic 
– Finitary fragment of Lω1G, L∞G: game quantifier 

logic
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Theorem

• For all F: C(L2,F)=HOD

• Third order, fourth order, etc gives HOD. 
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Observations: avoiding L

• C(Lω1ω) = L(R)
(every formula in lhs can be 

coded by a real; every real can 
be coded by a formula of lhs.)
• C(L∞ω) = V (same as above, 

but for sets)
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Other Generalized Quantifiers
Q1

MMxyφ(x,y) óthere is an uncountable X such that 
φ(a,b) for all a,b in X
– Can express Suslinity of a tree. (No uncountable 

branches, no uncountable antichains)
– Is countably compact (i.e. w.r.t.  countable theories) if 

V=L. L-Skolem down to     . Can be badly incompact. 
• Q0

cfxyφ(x,y) ó{(a,b) : φ(a,b)} is a linear order of 
cofinality ω
– Fully compact extension of first order logic. (Whatever 

the size of the vocabulary, if a theory of this logic is 
finitely consistent, then it is consistent.) L-Skolem
down to       . 

�1

�1
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C*

• Q0
cfxyφ(x,y) we denote “C*”

• C* knows which ordinals have cofinality ω
in V

127



Hitting L

C(L(Q1
MM)) = L, in the presence of large 

cardinals. (L thinks that L(Q1
MM) is FO, in 

spite of it’s being very far from FO in the sense 
of being badly incompact.)

Proof: if there is an uncountable homogeneous 
set in V then there is one in L. Uses an 
argument based on the indiscernibles given by 
large cardinals.
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Avoiding L

• C* ≠ L, in the presence of large cardinals. 
(Surprise is that cofinality is very close to FO 
logic in exhibiting a high degree of 
compactness.) 

• Proof: if α is regular in L and cofinality of α is 
>ω in V, we can express this in C*. But then α
belongs to the set of canonical indiscernibles, 
i.e we can define 0# in C*.
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More theorems

• If V=C* then continuum is at most ω2, and 
there are no measurable cardinals. 

• A real is always constructed on levels of rank 
less than ω2 in V.

• Second part is like the Scott proof.  
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Proof of V=C* implies continuum is at most ω2. 

• Condensation argument.
• If r is a real, then r is in some X       C*. By starting 

with countable and building a chain of length ω1 we can 
assume wlog that X (has cardinality ω1 and) “knows” 
about cofinality ω. Need witnesses both for cofinality ω
and for cofinality greater than ω. In latter case we 
change the higher cofinalities to cofinality ω1 by the 
chain argument. (Problem was that Mostowski collapse 
doesn’t necessarily preserve cofinalities in V.)    

• Then X ≅ L´α for some α, α<ω2
• Thus there are at most ω2 reals.
• Consistently (Namba forcing): exactly ω2 reals. 

  

€ 
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V=C* implies that there are no measurable 
cardinals. 

• Suppose i:VàM, κ first ordinal moved, M closed 
under κ-sequences.

• (C*)M=C*, since M and V have the same ω-
cofinal ordinals (since they have the same ω-
sequences).

• So M=V.
• i:VàV, κ first ordinal moved
• Contradiction! (By Kunen.)
• Smaller large cardinals are consistent with V=L, 

hence with V=C*.
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More theorems

If there is a Woodin cardinal, then ω1 is 
inaccessible in C*. (Stationary tower forcing. 
Gives an embedding into a model which is 
closed under ω sequences, which moves ω1 to 
the Woodin cardinal. Then (C*)M =(C*<λ)V.

Actually Mahlo. And ω2 of V is WC in C*. 
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Generic absoluteness

• Suppose there is a proper class of Woodin
cardinals. Then:

• Truth in C*  is forcing absolute and 
independent of a. (Stationary tower forcing.)

• Cardinals >ω1 are all indiscernible for 
C*. Another STF.

• Is CH true in C*? This is forcing absolute. 
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Large cardinals in these inner models

• Let C(aa) be like C* but use the stationary
logic instead of cofinality quantifier.

• Stationary logic has a quantifier ``for a club of
countable subsets X” φ(X).

• MM++ implies uncountable cardinals are
measurable in C(aa). (Magidor)
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In fact, this is a general schema…

R(L, O)
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L=C(FOL)

HOD=C(SOL)

One application 
of power-set

Hierarchy of 
generalized 
quantifiers.
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Another data point: “Unreasonable” 
effectiveness of semantic methods:

• Theorem (Väänänen-Vardi, Gödel, Parikh): 
Given a concept of provability in predicate 
logic, there is no recursive function f such that 
for all φ that are valid, if the length of the 
(semantic) proof (in set theory) of validity of φ 
is n, then the length of the predicate logic 
proof of φ is at most f(n). 



• P. 121
• But if I am right, the situation surveyed in the previous section is irremediable—

there is no viable way for the classical picture to assign stable contents to a range of 
familiar predicates (it is thus doomed, on my view, to remain merely a picture 
forever). 

• 126 It so happens that, if the inferential structures of a domain can be organized in 
axiomatic fashion, then logical connections such as modus ponens and universal 
instantiation can seem as if they rep- resent the central inferential relationships 
within the subject (I regard this point of view as erroneous: even in an axiomatic 
system, the dominant inferential structures of classical mechanics are closely tied to 
more specialized forms of reasoning and the particular features of differential 
equations). This logic-centered focus has occasioned a rather odd historical 
development. Many philosophers and logicians in the 1920s became con- vinced 
that quite general problems in philosophy could be profitably addressed by 
considering the behaviors of schematic or toy axiomatic systems (which were 
invariably dubbed T and T0, hence my syndrome’s label). 

• PAGE  127!!!!!
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Pierce’s paradox
• Overlapping languages
• Mark Wilson’s example in chapter 3, p. 116
Fortunately, we do not need to contend with these 

ramifications now, but only bear them gently in mind as we 
forge ahead. However, it helps to be prepared for the 
following eventuality: a particular predicate ‘‘P’’ has 
adequately established its practical credentials, but our 
present conception of its directive core has become shaken. 
Somehow we must find a replacement rationale for 
threading its satellite standards of correctness together, a 
process I shall later call ‘‘putting a new picture to it.’’ We’ll 
find that such occasions arise fairly frequently in the career 
of many descriptive predicates. 
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Precedent
“Although Carol Karp appreciated recursive 

function theory, she disliked proofs which 
involved codings and systems of notations. In her 
work on infinitary set theory she noticed that 
infinitely long formulae sometimes allowed her to 
circumvent notations…She discovered that by 
varying the logic in the system one could get a 
host of results about recursion theory and its 
extensions; furthermore it could be done without 
any ad hoc notations. Unfortunately, she only had 
time to work out some of the details for fragments 
of infinitary languages of the form Law (i.e., 
finite-quantifier infinitary languages).’’



It was her research on the infinitely long formal 
proofs that led Karp to the concept of L-R.E. on 
A. However, it is clear that the actual structure of 
the proofs is irrelevant, for all that is ever used is 
the consequence relation. Thus, for the purpose of 
discussing extensions of recursion theory, it does 
not make much sense to dwell too much upon the 
axioms and rules of inference. Consistency 
properties are a natural way of getting all the 
benefits of completeness while, at the same time, 
avoiding formal proofs. (Lopez-Escobar, 
Introduction, Infinitary logic: in memoriam Carol 
Karp)



“…It is certainly impossible to give a…decidable 
characterization of what an axiom of infinity is; 
but there might exist, e.g., a characterization of 
the following sort: An axiom of infinity is a 
proposition which has a certain (decidable) formal 
structure and which in addition is true. Such a 
concept of demonstrability might have the 
required closure property, i.e., the following could 
be true: Any proof for a set-theoretic axiom in the 
next higher system above set theory (i.e., any 
proof involving the concept of truth which I just 
used) is replaceable by a proof from such an 
axiom of infinity.”

144



“…while formalization is the key tool for the 
general foundational analysis and has had 
significant impact as a mathematical tool, there 
are specific problems in mathematical logic 
and philosophy where ‘formalism-free’ 
methods are essential.’’

---J. Baldwin, op cit



Philosophical commitments
• The actual content of mathematics goes beyond 

any formalization. C. McClarty refers to this as 
“expansive intuitionism,” his term for Poincaré’s 
reaction (or counterreaction) to formalism:

“…for Poincaré formal proof never itself yields 
knowledge—neither for the inventor nor for the 
student. Mathematical knowledge comes from 
mathematical reasoning, which is contentual and 
not formal.” Mclarty, Poincaré: Mathematics & 
logic & intuition
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