
Complementary science of 
interactive programming systems

Tomas Petricek and Joel Jakubovic
tomas@tomasp.net | jdj9@kent.ac.uk

University of Kent



Paradigm shift in computer programming

Programming languages Programming systems



Paradigm shift in computer programming

Programming languages

• Algol, Java, Haskell

• Code in a formal language

• Program as text

• Can be analyzed and run

Programming systems

• Interlisp, Smalltalk, Hypercard

• State includes code and data

• Interesting user interfaces

• Can be interacted with



Kuhn loss
What do we lose if we think about programming 

languages rather than programming systems?



What is using past programming system like?

Harder to study than 
programming languages!

Do you need a real machine to 
experience the interaction?

What can we learn from 
past programming systems?



Complementary science of programming

Hasok Chang (2012)

• Look at history to recover 
forgotten knowledge

• Contribute alternative 
views to current science

• Physics ideas abandoned due 
to experimental failures

Programming systems

• Many innovative past 
systems worth exploring!

• Abandoned not just for
scientific reasons

• Easier to recreate and further 
develop than in physics



Commodore 64 BASIC
Recreating the interactive experience of 

programming Commodore 64



What makes C64 BASIC interesting?

Everything done through 
one kind of interaction

Encourages users to 
become programmers

Memory mapped I/O with 
POKE offers hacker flexibility



Complementary science of 
interactive programming systems

• Many lost interesting ideas on programming systems!

• Look at the past to get new ideas for the future

• Simplistic partial reconstructions can be enough

Tomas Petricek and Joel Jakubovic, University of Kent
tomas@tomasp.net | jdj9@kent.ac.uk


